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Abstract. We consider the distribution of Madelung potentials (MP) in liquid monovalent
binary alloys CzAj—. exhibiting a significant degree of charge transfer, with particular
attention to the Csz Ay .- system. For canonicat models of onic liquids, and within the
framework of linear theories such as the mean spherical approximation, the MP probability
distributions are shown to be Gaussian and are studied in some detail. Fluctuations in the
effective electronic site energies, arising from disorder in the distribution of site mPs, are
shown 1o occur on the eV scale. We consider the consequences for electronic properties of
this coulombic disorder, and its interplay with the effects of on-site electron correlations,
with particular emphasis on the C-rich composition domain close to stoichiometry.

1. Introduction

In a simple ionic crystal, the electrostatic potential experienced by a test charge at
an ion is the same for all equivalent ions of a given species, as follows by transla-
tional invariance. With the loss of long-range order consequent upon melting, this
relatively simple situation changes. lons in different Iocal ionic environments in a
liquid will typically experience different electrostatic potentials, and the Madelung
potentials (MP) for ions of a given species are characterized by a probability distribu-
tion. What can be learned about the MP probability distributions for simple models
of ionic liquids? In particular, what are the energy scales which characterize fluc-
tuations in the distributions? And, importantly, what are the likely implications of
this coulombic disorder for the excess electrons which result with the cation species
element somewhat in excess of stoichiometry?

This paper is an attempt to address some aspects of these questions. The work is
in part motivated by the properties of the liquid alloy Cs_Au, _,. in the stoichiometric
and Cs-rich regime (z > 3). A wide range of experiments has been performed on
this system [1], probing the composition and temperature dependence of electrical
conductivity [2-5], thermopower [3, 4] and magnetic susceptibility [6]; studies of elec-
tromigration [7], thermodynamic and structural properties [8-11]; and spectroscopic
experiments—optical [12] and NMR [13, 14]. Similarly, important theoretical work
[15-23] has been devoted to the structural and electronic properties of the liquid
alloy. At stoichiometry, it is known that Cs,;,Au, ;, is a molten salt-like ionic insu-
lator consisting essentially of Cs* and Au~ ions. And with Cs up to ~ 7% in excess,
NMR experiments [13, 14}, in particular, indicate the excess electrons which nominally
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populate the conduction band to be present in the form of localized paramagnetic
centres, behaviour which is not observed in the corresponding near stoichiometric
solid [14].

In section 2 we directly motivate the present work with reference to a simple
mode! Hamiltonian for a monovalent binary alloy C A, .. In addition to one-
electron contributions of tight-binding form, and on-site electron—electron repulsions,
the Hamiltonian contains the inter-site Coulomb interactions on which we focus. With
a Hartree field decoupling of the inter-site electron-electron repulsions, an effective
electronic Hamiltonian arises in which the bare site energy for an electron on an ion
is replaced by an effective or coulombic site energy, to which the net MP at that site
directly contributes. Disorder in the distribution of site Mp thus generates disorder
in the effective electronic site energies, and may in consequence play an important
role in determining electrical and magnetic properties of the system (as discussed in
sections 6 and 7).

In sections 3-5 we consider the distribution of MPt characteristic of simple ionic
liquids, in which the long-ranged part of the interaction potential is essentially the
total Madelung energy arising from the model Hamiltonian considered in section 2.
This problem is a further addition to a range of different physical problems which
have recently attracted attention, and which require a knowledge of local field dis-
tributions of one kind or another [24]. In particular, much attention has been given
to the distribution of electric microfields [25-32] in plasmas and ionic solutions, rel-
evant for example to spectral line broadening in very hot plasmas. A knowledge
of local field distributions also plays a key role in theories of inhomogeneous spec-
tral line broadening of impurities in solids [33], liquids {34] and glasses [35]; and in
determining average rates for incoherent electron transfer [36].

In section 3 we briefly formulate the current problem via a familiar charging
strategy [37]. In section 4 the distribution of MP is considered within the framework of
so-called linear theories, which include as examples the mean spherical approximation
(MsA) and the linear hypernetted chain approximation. Simple graph theoretical
arguments show the resultant MP distribution for ions of a given species to be exactly
Gaussian; and when the short-ranged contributions to the interaction potential are the
same for both jonic species the second moment is trivially related to the first, enabling
a simple characterization of the full distribution via the mean. This is the case for
the much studied primitive model of electrolytes [38], used for example by Evans
and Telo da Gama [20] to model the experimental structure factor of stoichiometric

2 AUy /5.

iixpl:mt Msa results for the primitive model relevant to the distribution of Mp are
given briefly in section 3, and in section 6 they are applied to liquid caesium-gold, in
particular the stoichiometric alloy. The behaviour of the mean liquid-state cation MP
is considered and, at the melting point, is compared with that of the crystalline sto-
ichiometric alloy. Fluctuations in the MP distribution are likewise examined, and are
found to occur on significant electronic energy scales on the order of eV. And a series
of crude calculations on the optical density of states suggest that the experimentally
observed [12] melting-induced red shift of ~ 0.8 eV in the optical absorption edge
of Csy jpAu, ;,, may arise at least in part from fluctuations in the distribution of MP

t The quantity calculated in practice & the distribution of Madefung potential energies for an electron
on an ion of species o, Vi, = edm;i, where ¢y, Is the M. T avoid extraneous factors of e, we
do not belabour the distinction,
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which typify the liquid, and which come into play upon melting.

In the final section we consider possible implications of the coulombically gen-
erated site disorder for the behaviour of Cs,Au, _ with Cs somewhat in excess.
A short discussion is first given of experimental properties relevant in particular
to the domain of strongly localized spins for up to ~ 7% excess Cs, and to the
composition-controlled insulator-metal transition in the alloy. A qualitative account
of the observations from the present perspective is then given. This involves an in-
terplay between the effects of the coulombically generated site disorder leading to
localization of pseudoparticle states in the edge of the conduction band, and the
consequent enhancement of electron correlation effects, resulting in strong local mo-
ments and hence strong paramagnetism for the excess electrons at low excess metal
concentration [39]. The origin of this so-called quasi-atomic regime is then discussed
more formally via a specific model Hamiltonian closely related to that considered
in section 2. Finally, we mention the possible role of polaronic processes conse-
quent upon disorder-induced charge localization, and contrast briefly the behaviour
of Cs_Au,__ with alkali metal/metal-halide melts.

2. Motivation: a model alloy Hamiltonian

We consider a monovalent binary alloy of form C_A;_, = C,[CA],_,, where z =
Ng/(No+ N, ) denotes the mole fraction of the cation species element; equivalently,
y=(2z—-1)/z = (Ng— N,)/N. prescribes the excess cation fraction above the
stoichiometric limit of = 1, ¥ = 0. Each atom/site is assumed to contain 2 single
valence s electron, and for a given centre-of-mass configuration we consider the model
Hamiltonian

H' = HTB + Hintra + Héoul (2.1-‘.1)
with

Hry =" e,n, +3 3 'TCH C; . (2.1b)

T ig a1 fa oy
mtra = § : E : o ta, 1..-_.,' (21":)
O 1,

Here, o, denote the species (C or A), and i, j., denote sites of the appropriate
species, with centre-of-mass positions R, , R;_ s CF C;., are creation/annihilation
operators for cr-spm electrons on approprlate sites, and n, = C{f C;  isthe
corresponding o-spin number operator. Hpg iS a one-electron oontnbutmn of nght-
binding form with site energies €, = €; Of ¢4; and T;j7 = T*7([R; — R, |) i8
an inter-site electron hopping matrix element. H, ... descnbes on-gite mter-electmn
repulsions of familiar Hubbard form.

He > on which we focus here, describes inter-site¢ Coulomb interactions and is
taken to have the simple form

bot = 5 ZZ 1-n,) U (1=n;) 22)

oYty )J1
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where n; =3 _n, isthe number operator for the total electronic charge on site
1., and
oy e’

Uy = .
1 drep|R;, — Rj1|

2.3)

HL,,; thus describes coulombic repulsions between the positively charged ion cores,
inter-site electron/ion—core interactions (terms linear in n; ), and inter-site electron—
electron Coulomb repulsions. In arriving at (2.2) we have, for simplicity, neglected
inter-site electron-electron exchange matrix elements, and have taken the inter-site
electron-ion and electron-electron interactions to have pure Coulomb form.

To render Hy,,, more transparent, we define én; =n; —#; (where the over-
bar denotes a quantum expectation vaiue for the given centre-of-mass configuration)
and use the identity

n Ny, = Ay ng Ry on — 0 By +dngdng 2.4
on the inter-site electron—¢lectron terms in Hg ;. The final term in (2.4) gives a
contribution to H , of

H, = Z E 6n; U 6n;

&Y o fy

The three remaining terms in (2.4) yield a Hartree approximation to the inter-site
electron repulsions, the e-number term —#; 7; properly eliminating double counting
of the Coulomb repulsions. We now neglect H,. (and thus any consideration of the
Coulomb gap problem [40, 41]) and work within a Hartree approximation to the
inter-site electron—electron interactions: for a given centre-of-mass configuration this
is clearly a mean-field approximation in the quantum sense. The net ionic charge
on site j., arising from both the core charge and mean electronic occupancy, is thus
Z; = 1-n;; for example, Z; = +1or -1 (f; =0 or 2) corresponds to a
cIassmal’ cation or anion.

Using (2.4), and neglecting H,_ ., (2.2) reduces after some rearrangement to

ire?

H'{.Joui = HCoul +C (2.5(1)

where
Heou = Z Z: Vitiia i, (2.5b)
-2 E Vi i, T Eman ({Zj.,.}) - (2.5¢)

Here, Vyy,;, is the MP energy (see footnote p 2) experienced by an electron on site
14, arising from the mean coulombic fields due to all other ions in the system

=-3 Z Uiz, (2.6a)
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Similarly, Ey,,y, appearing in the ¢-number term C is given by

Buap ((2,,1) =5 3. 32, U572, = =5 -3 Vass, Zie (2.66)

@Y fafy

and is the total electrostatic Madelung energy for the given centre-of-mass configura-
tion: from (2.5)

Eyvap ({Z_f.,}) = Hou- @7

Hegy gives the purely quantum mechanical contribution to He,,. Thus H =
Hoag + Hoyy + Hipira gives the purely quantum contribution to H', and from (2.5b)
and (2.1) reduces to

H = Hyg ({&;,}) + Higra: (2.8a)

Hrg({e;_ }) is precisely of tight-binding form (2.16), but with the bare site energies
€, (a = C or A) replaced by

€, = €+ Vi, (2-85)

which is the effective site energy for an electron on site ¢, including the coulombic
fields due to all other ions in the system. The observation which motivates the present
work is simple: in a disordered system such as a liquid, the MP felt by an electron
on sites of a given species will clearly not be the same for all such sites, but will be
characterized by a probability distribution which is not §-function distributed, From
2. 8b), disorder in the {VM, } leads to site-diagonal disorder in the effective site
energies {¢; } appearing in the electronic Hamiltonian (2.82), and as discussed in
sections 6 and 7 this may play a central role in determining the electrical and magnetic
properties of the system. What can be said about the distribution of {V},; } and
hence the {¢; }, and in particular what are the energy scales which characterize
fluctuations in these quantities? Assuming self-averaging, we would thus like to know
the probability density for Vy,; over the ensemble of ionic configurations, which we
denote by F, (W, )-

Disorder in the MPs obviously stems from the disorder inherent in the centre-of-
mass positions, {R;_}, of the jons, This is explicit in {2.6a) via the dependence of
Ui = U(|R;, —RH[) on the ionic positions, and is the major feature responsible for
the disorder in the {V},.; } considered in sections 3 and afterwards. It is also implicit
in the {Z; } dependence of Vy; , as Z; = 1—#; , and for each configuration
the mean electronic occupation numbers {n ,1 ought, in principle, to be determined
self-consistently from the Hartree equations correspondmg to H. The usual approach
[15-19] to the latter intricate self-consistency procedurs is to simplify it by ‘coarse
graining’ the charges: for all sites i, of each species v, Z; is replaced by its
ensemble averaged mean value Z_; and Z;, Z, are then determined by the bulk
charge neutrality condition

S 2,2, =0 29)
.
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(where {z.} are the species mole fractions), together with a Hartree self-consistency
equanon for Z-~/Z, at the ensemble averaged level. At stoichiometry, for example,
2.9) gives Z; = |Z| = —Z,, where the self-consistently determined |Z| reflects the
degree of ionicity or charge transfer.

As far as estimating the probability distribution of Vi is concerned, coarse
graining of the {Z; }, while likely to underestimate fluctuations in the MPs, is probably
a reasonable ﬁrst approxunatlon for systems in which electronic charge transfer is
significant and dominated by a sufficiently large electronegativity difference between
the cation and anion species elements. This is the case in Cs-Au for example.
Stoichiometric liquid Cs, LUV is an ionic insulator, with a filled valence (anion)
band and an empty conduction (cation) band. In this split band case one clearly
expects 7i; =~ 0 and fi; =~ 2 corresponding essentially to classical ions with Z; =
+1 and Z = ~1. The experimental properties of stoichiometric liquid Cs—Au
indeed appear to conform to those of a 1:1 molten electrolyte [1]; and with Cs
somewhat in excess, the contribution of {Z; T} to the distribution of MPs potentially
experienced by the N, = N, — N, ‘excess’ electrons which nominally populate the
conduction band is likely to be dominated by the significant degree of stoichiometric
charge transfer.

To illustrate the above at its simplest, suppose that at stoichiometry charge trans-
fer is complete so that Z; = -1 and Z; = +1; and that with Cs in slight
excess Z;, = —1 remains. From (2.6a), the stoichiometric MP distribution is then
determined solely by the disorder inherent in the centre-of-mass positions of the Cs*
and Au~ ions, a determination of F,(Vyg; ) thus being essentially a problem of
classical liquid-state theory for a 1:1 electrolyte, as considered in the following sec-
tions. In calculating F, with Cs in slight excess, the coarse graining prescription in
effect distributes the small number N, = N, — N, of ‘excess’ electrons uniformly
over the cation sites, ie. #i; = N /Ng, = y is taken, with the net cation charge

ic. = 1 —y < 1 mainly due to the core charge appropriate to y = 0. Again, a
mlculatxon of F, o (Vi) essentially reduces to a classical liquid-state problem and

is determined by the disorder in the centre-of-mass positions of the Cs?¢ and Au-
ions.

We too will adopt the usual [15-19] coarse graining of {Z; } in calculating
F, (W, )- In particular we further note the following.

(i) That one-electron hybridization effects embodied in the interspecies matrix
elements {TAC}, which even is the stoichiometricSplit-band limit may act to reduce
Z]Z4 slightly below the ‘classical’ values [17-19), are for generality assumed to be
included in the appropriate bulk Hartree self-consistency equation which (together
with charge neutrality (2.9)) determines the Z.s.

(ii) Given the coarse graining prescription, electron—electron screening at the
Hartree level are partially included in counterion screening effects of the classical
ionic iquid (C2¢),(Al%al™), __, since the net ionic charges therein are a composite
of core charge and Hartree field electron occupancy.

We now consider a potentially important omission in previous work. As men-
tioned, a Hartree approximation to the inter-site electron-electron interactions is
mean field in the quantum sense for a given centre-of-mass configuration. However,
much previous work concerned with the electroric structure of liquid alloys employs
in effect a double mean-field theory. That is, mean field not solely in the Hartree
quantum sense for a given disorder realization, but mean field also in a statistical
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sense: Vi, occurring in the effective electronic site energy ¢; (equation (2.85)) is

for each site of any species, replaced by its constant mean value (VM, } averaged
over the ensemble of centre-of-mass positions. The site MP is thus, in cﬂ'ect, taken as
being é-function distributed on its mean. Any disorder in the electronic site energies
arising from fluctuations in the Mps is thus entirely ignored, the mean MP simply giving
a constant shift to each site energy of a given species; and any effects coulombically
generated site disorder may have on electrical and magnetic properties of the system
are hence a priori neglected. We clearly wish to avoid a double mean-field approach.

3. Formulation of the problem

With
Viga, == 2.0 U Z, (3.1)
¥ I

we thus consider the probability distribution F,{Vy;_ ) over the ensemble of centre-

of-mass configurations of the liquid. F.(z) and its Fourier transform £ (k,) are
given by

F,(z)= (5 (VM;-;,, - -““)) Foe(kl) = <3xp (ikxvm-,i,)) (3.2)

where {e} denotes a configurational average, the nature of which must be specified.

We take
{o) =]d1‘e'5‘1’ (')//dI‘ o 8%

where 8 = 1/kT, dT' =[], []; dR,_ , and ® denotes a classical interaction poten-
tial which determines the probability with which any configuration is generated. We
decompose P into pairwise additive terms

Z S (3.3a)

Y Loy
and the pair potential qf:""’ = ¢*7(|R;, — R, |) is further separated into short- and
long-ranged contributions-
qb;'y = ¢z;,SR + ¢:'J_‘i?’00ul' (33b)

Since we are concerned with the distribution of Mps in ionic quuids exhibiting a
significant degree of charge transfer, the long-ranged part of ¢7;7 is taken to be the
coulombic interaction between ions of species o and «, ie.

45?}?001;1 = zo: U:;T z—y (34&)

with U7 as in (2.3). Notice from (2.6b) and (2.7) (with Z; — Z,) that & is thus
decomposed as

® = $gp + Eyap (3.45)
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where Ey,p = HL_, arises from the inter-site Coulomb Hamiltonian considered
previously. The short-ranged interactions, necessary to ensure thermodynamic sta-
bility, do not at this stage need to be specified. Later we consider explicitly the
case where the ¢z (R) are hard sphere interactions, the equisized limit of which
corresponds to the much studied primitive model [38].

Equation (3.2) for £, (k,) may be written using (3.1) as

F, (k)= <exp {-BZZH"""}> (3.5a)
with

ij

o kT O
Uz = ik, (Z_a) [2.0572,) (3.5b)
and is formally equivalent to

F, (k) = exp (-BAu,)

where A g, is the excess interaction chemical potential for the ‘tagged’ ion ¢ of species
o when it additionally interacts with the other jons in the liquid via the complex
‘potential’ I{{;”. A, may be calculated via the standard Onsager—Kirkwood-Widom
charging strategy [37, 42] whereby one ‘Charges up’ the additional interaction of the
tagged particle with the other ions. This leads to

F. (k) = exp {—iklzp,z, /l dAdeU(R)hM(R; .\)} . (3.6)
y [}

Here, U(R) = e*/(4w¢yR), p., = px,, is the partia] number density of species
jons; and A, (R; ) = ga,.f(R A) — 1 is the partial pair distribution function (PDF)
for an effect.we liquid in which the tagged ion of species « at the origin interacts with
ions of species ~ via the cffective pair potential #7;" + NA; "

4. Madelung potential distributions: linear theories

To calculate the distribution we thus need h,.(R;A). This we consider within
the class of linear graphical theories which include as examples the mean spherical
approximation (Msa), the linear hypernetted chain approximation (LHNC) and the
linear exponential (LEXP or LIN) approximation [37]. The essential result here is that,
for a linear theory, the MP distribution for ions of species o = C or A is exactly
Gaussian; and that in a particular simple but relevant case the second moment of the
distribution is trivially related to the first, enabling a complete characterization of the
distribution solely from a knowledge of the first moment M,, = (V). The brief
proof we now give is based on graphical arguments; the same result follows from a
detailed analysis of the relevant integral equations appropriate to a particular linear
theory.

Consider first b, (R) = h,.(R;A = 0), the partial PDF of the actuai ionic
liquid. This may be analysed formally [37, 43] by regarding the short-ranged part
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of the total interaction potential as a reference system, and developing a graphical
expansion for k.. (R) in terms of reference system bonds (Mayer f-bonds or PDFs

for the reference system), p. -circles and o7(ij) = —ﬁtg&;’;ficou, bonds pertaining to
the interionic Coulomb interactions. We employ the rotation h,. (R) = h,,(1,2)
where 1,2 label the root points (RP) and are shorthand for R, , R., the centre-of-mass
positions of the ions of species o and ~ respectively, such that B = |R, — R,|.

Two essential approximations which characterize any linear theory are:

(i) the maximum number of ®>¢ bonds which intersect any field point (FP) is
two; and, central to the present discussion,
(i) at most one &4 bond is connected to a RP.

From (ii) we may formally decompose 4, (1,2) as
hon(1,2) = BO)(1,2) + () (1,2) @.1

where h5,°.3(1,2) is the contribution to h,,(1,2) in which no $4(1, 5) bond is

connected to RP1 associated with the ion of species «; and hg-a(l,z) is the sum of
all contributions in which a single ®>%(1, j) bond is so connected.

The function k. (1,2; A) = h,.,(R; \) appearing in (3.6) has precisely the same
topological structure as k,.,(1,2), but with $$%(1, j) bonds connecting to the RP1
associated with the tagged species o particle, where

2%5(1,5) = ®*%(1,5) + [-BM*(1, )]

= [1 + ik, A (-’;—T)] ‘I)aé(l,j). (4.2)
From (ii) above it follows that h£,°.3(1,2; A} = hf,?.?,(l,z); and, using (4.2), that
hoo(1,2;0) = RE(1,2) + ALI(1,2; 0) (4.3a)
where
RO (1,2;0) = |1 + ik A { ZEY] 2 4.3b
a-y( 1 2;0) = + ik Z a—f(lvz)' (4.3b)
Hence using (4.1) we have the desired result that
Ry (1,250) = b (1,2) + ik A ( SL) a0 (1,2 4.4
cx'r(?!)_ a'r(v)‘*"ll '2": ar'y(s) (4.4

where the entire k; A dependence of a,.(1,2; A) is explicit.
Since k. (R; A) is linear in Ak, it follows from (3.6) that within the framework
of any linear theory, the MP probability distribution is exactly Gaussian:

-l 2 1o pg2
Fule)= oom—exp {~le- M) j2ME, ) @.3)
The mean MP for ions of species o, M, = (Vy,;_ ), is given simply by

My, =-%p,2, f dRU(R)h,(R) (462)
¥
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and the second moment My, = {[Vig,; —{Viy;, ))%)!/? characterizing the fluctuations
is given by

M2, = _%r"izp,,z,,fdn U(R) [hay(R) - KOU(R)].  (4D)
«

The distribution is thus naturally controlled by the structural characteristics (or chem-
ical short-ranged order} of the ionic liquid, embodied in the partial PDFs.

That the MP distribution is Gaussian stems from the linearity of (4.4) in kA,
which is the essential feature of a linear graphical theory. In a wider context, one
expects generic local field distributions [24] to be Gaussian within the framework
of linear theories. For example, Lado [29] has shown the distribution of electric
microfields to be Gaussian within the Msa for a one-component plasma; and Vericat
et al [31] (see also Blum and Hubbard [32]) find the same for the MsA microfield
distribution appropriate to ionic and polar solutions.

The result (4.6b) for the second moment of the MP distribution simplifies usefully
when the short-ranged interactions which characterize the reference system are the
same for all species, so the reference liquid is in effect a one-component system.
This is the case, for example, with the much studied primitive model of electrolytes
[38], where the charged hard spheres of the various species have equal hard-sphere
diameters. The basic structure of graphs contributing to h,.(1,2) in any linear
theory is a connected polygonal chain of ®#%(j, k) and/or reference system bonds
extending from RP1 to RP2, with the possibility of subsequent decoration by reference
system bonds alone. For a one-component reference system, an F? k in any such
graph which is intersected by n = 1 or 2 ®P%(j, k) bonds is associated with a
factor of p,; and hence in total with a factor of 3 _; p; Z7. The bulk charge neutrality
condition 3", p; Z; = 0 thus implies that an FP can be intersected by two or zero @#%
bonds only. As hf,?%(l,z) is defined to be such that no $*¥(1, k) bonds connect to
RP1, it follows that hg‘,’%(lz) contains reference system bonds alone, and is simply the
PDF for the reference system appropriate to the specific linear theory. For example,
with an equisized hard-sphere reference system appropriate to the primitive model,
hOYR) = hf,?%(R) is the Percus—Yevick approximation to the hard-sphere PDF within
the MsA [37, 43], and is the full hard-sphere PDF for LHNC.

Since k{3 (R) is independent of the species for a one-component reference sys-
tem, it follows from (4.6) using bulk clectroneutrality that

kT
M3, = =M. (*.7)
o
This result enables a particularly simple characterization of the full MP probability
distribution (4.5) solely from a Jmowledge of M, ,, equation (4.6a). Different linear
theories will naturally correspond to different specific approximations to the partial
PDFS, ha—,(R): of the jonic liquid; a specific case is now discussed.

5. Primitive model: MsaA

Here we consider the MP distribution within the MsA for the primitive model of a
binary electrolyte. The Msa primitive model is of relevance to liquid Cs-Au, as it
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has been employed with some success by Evans and Ttlo da Gama [20] to model the
experimental structure factor of stoichiometric liquid Cs—Au, and by Holzhey ef al
[19] in their double mean-field study of alkali-gold alloys.

From (3.4b), the excess internal energy per ion (over the refrence system) is
U N = (Epyap)/N with N = N+ N, the total number of jons; and thus from
(2.6b) (with Z; — Z,,)

Uss 1
N =3 > 2, Z, Vi, )- (5.1a)

For the primitive model, A3 ( R) = £} R) within a linear theory as discussed above,
and h$J(R) is of the form Z,C(R)Z,. From (4.1) and (4.6a) together with the
bulk electroneutrality condition, it follows that Zg(Viy,,) = Z25(Vjic)> and (5.1a)
reduces to

Uue 1 1
N §ZA(VM;1'¢) = §ZC(VM;1'A)' (5.1)

Knowledge of U*/N is thus sufficient to give M, = (Vj, ). For the Msa,
Waisman and Lebowitz [44] have given the excess internal energy in closed form. It
is a function of the Msa coupling constant ¢ given via &2 = ¢2|Z, Z| where

£ =4np*p". (5.22)

p* = po? is the reduced density, with o the hard-sphere diameter of the constituent
ions; and we have defined the reduced inverse temperature by 8* = Gle?/dreyo].
From the charge neutrality condition (2.9), Zo = —(1 — y) Z,, whence

& =(1-y)Z3¢€ (5.2b)

with y = 0 corresponding to the stoichiometric alloy. From Waisman and Lebowitz’s
results [44], and uwsing (5.16), M, (e = C or A) is thus given in closed form by

2
(M, =) (Vi) = 2, F;;A(E) (5.3a)
with
A€) = % [1 +E~(L+ 25)1f2] . (5.3b)

Note that A(¢) — & as £ — 0 corresponds to the Debye-Hiickel limit; and A(¢) ~ 2
as { — oo corresponds to the Onsager bound [45] on the excess internal energy,
reflected in a saturation of M,, as £ — oco. In the molten salt regime, relevant
to our subsequent discussion of Cs-Au, £ ~ 20 is typical. We also add that the
accuracy of the MsA for M, can be assessed by comparison of the MSA for U=* /N
with Larsen’s [46] Monte Carlo simulations of the restricted primitive model (i.e. at
stoichiometry, «, = %): in the molten salt domain the MSA reproduces U< /N to
< 5% accuracy, which js wholly adequate for present purposes.

With M, given from (53.3), M, follows from (4.7), and the MSA MP probability
distribution F,(x) (equation (4.5)) is thus specified.
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6. Application: Cs, ;,Au, ,, liquid and solid

In figure 1 we illustrate the MsA results for the case of stoichiometric Cs-Au (y = 0),
which is known experimentally [1] to be a molten salt ionic insulator. The mean
liquid-state cation MP, M, (in eV), and the root mean square (RMs) fluctuation in
the distribution, M,., are shown as the temperature is increased from the melting
point T}, = 590 °C. From the results of Martin et a [10], the ionic number density at
Ty I8 p~ 2.24 x 10?2 cm~2, and since p varies very little over the temperature range
of figure 1 we have taken this value throughout. From the work of Evans and Telo
da Gama [20], we take the effective hard ion diameter o = 3.15 A; thus p* = 0.70,
typical of a molten salt. At stoichiometry, Z¢ = |Z| = —Z, and we have illustrated
the Msa results for M, and M, for two choices of |[Z] = 1 and 0.8. The former
corresponds to total charge transfer with ‘classical’ ions, and although this is largely
the consensus choice in describing experimental properties of the stoichiometric alloy,
we consider also the case |Z| = 0.8 to illustrate the possible role of partial charge
transfer due to one-electron hybridization effects studied by Holzhey et al [17-19].
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Figure 1. Mean liquid-state cation MP energy (Mig), and Rms fluctuations (Mac),
obtained from the primitive model MSA with paramelers appropriate to stoichiometric
Cs-Al; as a function of 7" (in °C) from the melting point (T = 590 °C). Results for
different values of [Z| (= Z¢ = —Z,) are shown. For T < Ty, corresponding solid
state values for the mean are shown (see text).

Consider first the mean cation MP (note that M,, = —M,c and M,, = My,
at stoichiometry). As seen from figure 1, M, is only very weakly T-dependent but
is naturally sensitive to the degree of charge transfer, embodied principally in the
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explicit Z_, factor in equation (5.34). In particular, for the liquid at its melting point,
we find M, = 6.83 eV (for |Z| = 1) and 5.28 ¢V (for |Z| = 0.8).

It is now instructive to calculate the MP energy for the crystalline stoichiometric
Cs—Au alloy, which has the CsCl structure. This is given by (o = C or A)

6.1)

Vag,o (S0lid) = Z,

4dmeyTry

where ¢ = 1.762670 is the Madelung constant for the CsCi structure and r; =
v3a/2 is the nearest-neighbour distance with a the lattice constant. We note the
similarity in form between the solid state result (6.1) and the MSA resuit {(5.34) for
the mean liquid state MP, A(£)/o in the latter playing essentially the same role as
4/ry in the former. From the work of Spicer et af [47], a = 4.263 A for crystalline
Cs, /5 Al 4y, 50 (6.1) yields V. o(solid) = 6.87 eV (for |Z| = 1) and 5.50 eV (for
|Z] = 0.8). Notice that the two parametrically unrelated calculations—for the solid
and the liquid at its melting point—are extremely close as illustrated in figure 1, being
within < 1% of each other for |Z| = 1.

We now consider fluctuations in the Mp, which clearly have no natural analogue
in the crystalline solid but which typify the liquid, and which as discussed in section 2
lead to disorder in the effective site energies {¢;,} appearing in the mode] electronic
Hamiltonian (2.8). As is evident from figure 1, the Msa RMS fluctuations M, are
quite insensitive to either temperature or the degree of charge transfer (M, for
|Z| = 0.8 lying between those shown for |Z| = 1 and 0.6). More importantly we
note that fluctuations in the MPs, and hence the electronic site energies, occur on an
appreciable energy scale of ~ 3/4 eV, possible implications for which are discussed
later and in the following section.

These comments refer to stoichiometric Cs-Au, y = 0. To estimate the effect
upon MP fluctuations of increasing the cation species somewhat above stoichiometry,
note from (4.7) and (5.3) that

I €2 172
Mo = [ Eoirae)] 62)

For given T, the dependence of fluctuations on the (interdependent) variables y, | Z, |
and p* is contained solely in A(£), (5.30), with & = |Z,|[(1 — y)47p*B*]*/% and
[A(£)])Y/? is a monotonically increasing but slowly varying function of £, increasing
by only ~ 10% over the wide range 10 < £ < 35 which encompasses any reasonable
¢ domain of interest. For example, at T = 640°C, and for y in the range 0—%
(where the experimental DC conductivity [5] is < 600 ~! em™1), £ lies in the
range ~ 22|Z,| to ~ 16| Z,| using experimental densities from Martin et a/ [10] and
Kempf and Schmutzler {1}, and M, varies only very slightly about ~ 0.7 eV for any
reasonable estimate [19] of |Z,| in this y interval. In contrast, as expected, the mean
liquid-state cation MP A{, - diminishes on the eV scale over this y range, due mainly
to the explicit factor of Zc = (1 — y)|Z,| appearing in (5.3a) for M.

Although the preceding theory is designed to estimate the Mp distribution in
ionic liquids exhibiting a non-negligible degree of charge transfer, and should not be
pushed too far, we note that as y — 1 the MsA F (Vjr; ) — 6(Vy, ) as expected
for the non-ionic pure C species element where, given the usual coarse graining
prescription described in section 2, the electrons completely screen out the C4- core
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charge for y = 1. Experimentally [10], the pure Cs element reached as y — 1 in the

Cs, [CsAu]; _, alloy has r, /a, ~ 6 (where §wor? = 1), typical of a fairly high density
hqtud metal; and one might reasonably model the system as an interacting electron
gas in this limit. That F, (Vg ) = 6(Vy, ) for y = 1 as above may however be
regarded as an analogue Of the fact that, for an electron gas, the potential felt by an
electron due to the ion cores is precisely cancelled by the direct (‘bubble diagram’)
interaction describing the Hartree potential arising from the other electrons. In the
electron gas the electrons do not totally screen the core charge, but are certainly
highly effective in this regard: for example, with =,/a, ~ 6, A/r, ~ 1 where X is the
Thomas—-Fermi screening length.

o see a possible implication of disorder in the distribution of effective electronic
site energies {¢; } (equation (2.8b)) arising from the distribution of MPs, we consider
again the stoichiometric alloy Cs, ;,Au, ;,. In figure 2 we show schematically the zero
order electronic density of states (D0s) D°( E) arising if we neglect coulombically
generated site disorder, and consisting at stoichiometry of a filled valence (anion)
band and an empty conduction (cation) band separated by a gap. Also shown are
the distribution of effective site energies for cation and anion species sites, which are
essentially (see (2.8b)) just the Gaussian MP distributions for ions of the appropriate
species. Clearly, a fraction of the ions will have effective site energies lying outside
the unperturbed bands. What this implies when the DOs is calculated including the
coulombically generated site disorder is that the DOS will ‘smear out’ somewhat into
the gap, which is thus reduced from its zero-order value.

[

D{E)

—AEG—

Figure 2. Schematic illustration of stoichiometric zero-order electronic pos, D°(E)
{chain curve), arising if coulombic site disorder is neglected; and consisting of filled va-
lence and empty conduction bands separated by a gap A ES. The Gaussian distributions
of coulombic site energies for cation and anion species sites are also shown (full curves).

An ab initio calculation of the band gap in the stoichiometric liquid alloy is
exceedingly difficult; and previous theories, which neglect MP fluctuations, in effect
choose model parameters to fit the gap. As hinted above, however, we can assess
the relative shift in the band gap—reflected for example in the optical Dos—when
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we bring into play fluctuations in the MPs, and hence site enetgies, which are typical
of the liquid. This should provide a rough estimate of the sort of shift one might
expect in the optical absorption edge when the crystalline solid is melted, assuming
the principal change in the band gap on melting arises from the introduction of
fluctuations in the distribution of MPs; and, in particular, that the mean ionic MPs in
the liquid (M, = —M,,) at its melting point do not differ appreciably from those
for the crystalline solid—which, as above, appears to be the case for Cs, ;,Au, /.

To estimate a typical magnitude of the shift, we consider the optical DOs (to which
the optical absorption is essentially proportional [48])

Ep
Dyp(w) = /EF_M D(E)D(E + hw)dE

as a function of photon energy fxw. The ODOS is first calculated without MP fluctu-
ations (as would be the case for the solid), with 2 known band gap A EY which we
take to be 2.1 eV—the gap for stoichiometric crystalline Cs, ;,Au, /, at its melting
point found experimentally by Miinster and Freyland [12]. We denote this by Dgpt (w)
and estimate it very simply by assuming a simple semi-elliptic DOs for the zero-order
valence and conduction bands. These have widths W3 and W respectively, and are
centred on €§ and €} (with €2 — ¢4 chosen so the given A E is reproduced), where
the effective €, implicitly include effects due to the mean MP and on-site correlations
at the Hartree level. We then calculate D(E) = Dy(E) + D(E) in the pres-
ence of the coulombically generated site disorder. In practice, the ionic site energies
€, = €5 + (Vi — (Var,)) are treated as independent random variables with a
Gaussian distribution for Vy; of halfwidth (21n2)}/2M,, = 0.84 eV, obtained via
the Msa from the known density and temperature of stoichiometric liquid Cs, ;,Au, /,
at its melting point (as in figure 1); and Dy ( E), D-( E) are estimated very simply by
a simple single-site approximation [49] requiring solely a knowledge of W2, W¢ and
the site energy distribution. The resultant D, (w) is then compared with D3, (w),
and the shift to lower w in the edge of D,,, can then be assessed.

These calculations should not be taken too seriously but, as one might expect
physically, we find the shift to be of the order of the halfwidth of the coulombic site
energy distribution, (21n2)}/2M,, ~ 0.85 eV as above. In fact, with W3/W¢ in
the range W} ~ 4-7 eV, W& ~ 22-5 eV (encompassing previous estimates [17-19]),
and with A E2 also scanned over a wide range of ~ 2-6 eV, we find the shift to lie
in the range ~ 0.8-1.2 eV.

Albeit that this shift estimate is crude it is interesting, and perhaps not coinci-
dental, that Miinster and Freyland [12] observed a discontinuous redshift of about
0.8 eV in the optical absorption edge of stoichiometric Cs,/,Au, ;, when the solid
was meited: the observed volt-scale, melting-induced shift may stem largely, or at
least in part, from fluctuations in the distribution of MPs which typify the liquid, and
which come into play when the solid is melted.

7. Discussion: Cs, [CsAu),_,,y >0
The stoichiometric split-band alloy CA, on which we have mainly focused, is effectively

a zero-particle problem in the sense that there are no holes in the valence (anion)
band and no electrons in the conduction (cation) band. We now consider the likely
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effect of the coulombically generated site disorder on the N, = Ny — N, ‘excess’
electrons as the excess cation fraction y(= N,/Ng) is increased above stoichiometry,
y =0

The experimental properties of liquid Cs [CsAu],_, with Cs in excess are rich.
In particular, a 133Cs NMR study by Dupree et al {13] of the Knight shift, K, and the
spin-lattice relaxation rate, T;"%, points clearly to the existence of strongly localized
spins for y up to ~ 0.07 (7% excess Cs). K is proportional to the electronic
paramagnetic spin susceptibility X,,. For 0 < y £ 0.07, K is observed [13] to be
linear in y, commensurate with a free-s»pin-§ Curie law paramagnetism for the excess
electrons, which is also supported by the direct magnetic susceptibility measurements
of Freyland and Steinleitner [6); and above y- = 0.07 this behaviour is rapidly lost.
In the same y range, an enhanced T, ! characteristic of strongly localized spins is
also observed [13]. The features just described are not observed in the crystalline
near-stoichiometric alloy {14], for which no evidence is found for excess localized
paramagnetic centres.

At what value, ¥y, of y does a composition-induced insulator-metal transition
(I-MT) occur in the liquid alloy? Experimentally one would like to answer this
via ¢lectrical conductivity measurements, but the experiments [2-5] are of necessity
performed at elevated temperatures (T° ~ 600°C) and precise sample control is
demanding; an unambiguous answer is difficult to obtain. Previous conductivity studies
[2-4] suggest an -MT around y,, ~ 0.21 (where 4. ~ 450 -1 cm~! from recent
measurements [5]), and it is worth noting that the work of Avei and Flynn [50],
and Swepumson and Even {51], on amorphous Cs,[CsAu],_, in the temperature
range T ~ 5-20 K suggests an I-MT around y ~ 0.3. The above NMR results
[13] are certainly consistent with localized electronic states for y < 0.07; and at
¥y = yo = 0.07, 04, = 130 Q! cm~! [5] which is sufficiently below any reasonable
estimate of o, that we expect yy > yo. (Further, as argued physically later,
we do not think it reasonable to infer an I-MT from the onset of a diminution in
K or X,, below a linear dependence on y characteristic of free-spin-} Curie law
paramagnetism.} All one can say with some confidence is that y,; probably lies
somewhat in excess of yc.

7.1. Qualitative considerations

We first attempt a qualitative account of the cobservations from the viewpoint of the
present work, involving an interplay between disorder and the effects of electron
correlation. Referring to figure 1, we pointed out that a fraction, f_, of cation
sites will have effective coulombic site energies Iying below the lower edge of the
unperturbed conduction/cation band, extending somewhat into the gap region. As a
rough order of magnitude estimate, we find from the MSA F(Vjyy,; ) with parameters
appropriate to Cs,[CsAu],_, at low y for the temperature range T ~ 600-800°C,
and with zero-order cation bandwidths Wg ~ 2-4 eV, that f_ has a fairly small value
typically in the range 1-10%.

Regardless of the precise means of modelling, we expect pseudoparticle states
in the low-energy edge of the conduction band DOs to be localized, mainly by the
effects of the coulombic site disorder. For relatively small amounts of excess Cs, we
thus expect physically that the N, = Ny, — N, excess electrons will occupy such
localized states, centred around cation sites with the lowest coulombic site energies—
those sites whose local ionic environment is energetically most favourable in terms of
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the local coulombic fields experienced by the electrons. The system would therefore
be insulating.

That, however, is only part of the problem—for the greater the tendency is to-
wards coulombically induced localization of the excess electrons, the greater the extent
to which electron—electron interactions will act to prevent double occupancy of the
relevant states. That is, in consequence of disorder-induced charge localization, the
excess electrons at sufficiently low concentration will be highly correlated, electrons
of the opposite spin being effectively precluded from an occupied spatial region by
the effects of electron—electron interactions (both on-site and inter-site in general).
For sufficiently small excess Cs concentrations, we thus envisage the occupied pseu-
doparticle states in the edge of the conduction band to be essentially non-overlapping
and singly occupied by electrons. In consequence, it follows that in such a low-y
domain the paramagnetic spin susceptibility per cation site, x,,, will follow a free
spin-3 Curie law, ie.

_ Hopg N. _ poui
Xeb = kT N, kT U .5

Both x., and hence the Knight shift, /, should thus be proportional to y in
Cs [CsAu]l_ , as observed for y < yo ~ 0.07 [13]. We add that arguments based on
disorder alone are unlikely to suffice: if electron correlation effects were irrelevant,
we would expect essentially doubly occupied pseudoparticle states, leading to a Pauli
paramagnetism for the excess electrons with an expected y dependence x ., ~ ye

To point up the above, note that we do not assume the localized pseudoparticle
states occupied by the excess electrons at low y to be atomically localized on single
cation sites: the states may, and in general will, extend over several such sites. To
obtain (7.1) we simply require y sufficiently small that the localization lengths £,
of the occupied pseudoparticle states are small compared to the mean separation
between the excess electrons, so the singly occupied states do not overlap each other
in space. Provided this is the case, a free-spin-; Curie law paramagnetism for the
excess electrons will result, as it would for the case of genuine ‘atomic’ localization; for
this reason, we refer to the y domain in which a free-spin-1 Curie law paramagnetism
results as a quasi-atomic regime [39].

These arguments have a further implication. The smaller the localization length,
£,, of a pseudoparticle state, the greater the extent 10 which electron correlation
effects are enhanced, suppressing double occupancy of the state. Physically, we
expect £, to increase with increasing pseudoparticle state energy, tending to infinity
as a mobility edge is approached from below. Further, with increasing population of
the conduction band (increasing y), the mean separation between the excess electrons
will decrease. The free-spin-; Curie law paramagnetism symptomatic of the quasi-
atomic regime is indicative of the excess electrons being in non-overlapping singly
occupied localized states; and erosion of this behaviour as y is further increased will
occur when some of the occupied pseudoparticle states overlap each other in space.
From the above, this process will begin to occur when the occupied states are still
localized; that is still in the insulating domain, below the critical yy, at which Fermi
level pseudoparticle states become extended over a finite fraction of the macroscopic
system ({p — oo) and the fransition to a metallic state occurs, We thus expect
Yum > Yo where y is the excess Cs fraction at which the paramagnetic susceptibility
begins to deviate below a free-spin-3 Curie law paramagnetism. (Quantitatively,
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however, all we can say is that y- ~ 0.07 is compatible with the rough estimate of
f_ ~1-10%.)
7.2. The quasi-atomic lmit

To see the origins of the quasi-atomic regime from a specific model, we consider a
simple one-band description of the conduction band (cf equations (2.8), (2.1b,c)):

HC = HTB ({Eic}) + Hintra. (7'2)

Hpg =3 eiomi, + Z T;C1 C;, (7.32)
"’o‘ PJ!

Hintra = Z Unl"[n':'i' (73b)

As in (2.8b), €, = €c + Vi, includes the coulombically generated site disorder;
and the sums nOW run over cation sites only, with T}, = T(|R;_ — R;_|) and the
on-site Hubbard U referring to cation sites. H, is just a smplxﬁcauon of the model
H considered in (2.8a), for if one-electron hybridization matrix elements {T;}C} are
neglected H is separable, H = H, + Hg, with H, pertaining to the anion/valence
band and . as above. The simplification is physically reasonable provided conduc-
tion band pseudoparticle states are primarily associated with the cation sites, but we
make it largely for convenience: much of what follows can be extended with labour
to the full A.

The disordered Hubbard model H - can clearly be canonically transformed [52,
53] from a site basis to a representation in terms of the exact eigenstates {|W,}} of
the Hamiltorian in the I/ = 0 non-interacting limit (i.e. the disordered tight-binding
Hamiltonian (TBH), Hyg({e; })), with basic operators C¥, and C, . Specifically,

=2 aaCl G =2 a,C, (7.4)

where o, is the coefficient of the site atomic orbital |7) in the expansion of the TBH
cigenstate |V} with energy E, : |¥,) = 3"; a;, }£). This leads to

Ho=) Exnyo+ 3, UnurCHC,CHCry (7.52)

Ao ALy T

= ZEAnA,-}-ZU,\nMnM+(temls excluding A\=v=p =171)
Ao

(7.5b)

where
Usyur = U Z af,a;, 0} a; . (7.5¢)
In particular, U, = U, ,,, is given by

Uy=UY la,I* = UL(E,) (7.6)
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where L{E,) is the inverse participation ratio (IPR) for a TBH state of energy E,,
which vanishes for an extended state and is finite for a localized state, with [L{ E, )] *
a rough measure of the number of sites participating in the state. The interplay
between disorder and correlation is thus evident in U,, . in general, and U, in
particular, for the latter js an effective ‘on-state’ Hubbard-U for a TBH state of energy
E,; and its magnitude is determined by the extent to which the state is localized,
increasing for more strongly localized states.

We now consider the system at a low filling fraction y = N,/N such that, for
U =0, only a small fraction of TBH conduction band ‘tail states’ are occupied in the
non-interacting ground state. The non-interacting ground state thus consists of TBH
states doubly occupied up to an energy E2(y). This is illustrated in figure 3 which
shows schematically the lower region of the conduction band DOS in the U = 0
non-interacting (TBH) limit, denoted by Dg’)(E) (full curve). A region of TBH
states is assumed localized by the effects of disorder, with a mobility edge E_
separating the localized and extended portions of the spectrum as shown. And y is
assumed sufficiently small that the occupied TBH states are quite strongly localized
(with E3(y) < E,,.;,), so such localized states will typically not overlap in space.

fe=dacreasing Uy, ot Uy, =0

O¢(E)

m

£ ERYEdY En

Figure 3. Schematic illustration of the lower region of conduction band DOS appropriate
to small ¥ in the I/ = 0 non-interacting TBH limit (D(C?}(E), full curve); E,op denotes a
mobility edge, and E2(y) the U = 0 Fermi level. D ( E) appropriate to the interacting
Hamiltonian equation (7.6) is also shown (broken curve)} together with corresponding
Fermi level Ex(y), under conditions detailed in text.

We now envisage ‘switching on’ the on-site electron-electron interactions embod-
ied in the Hubbard U, regaining the full H, equation (7.5). Terms in (7.5b) over
and above the diagonal on-state U, interaction, such as spin-flip exchange terms of
form

U2 Y laylPley, IPCHC, CF Cyy
i A
(r#))

involve on-site overlap of distinct TBH states, embodied in |a;, |%[a; [2(v # A). The
argument that strongly localized TBH states will typically not overlap in space implies
that if A and »(# A) are such a pair, then |e; | and |a; |? will not typically both
be appreciable. As a first approximation, therefore, and given our consideration of
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small y, we retain only the first two terms of (7.5b) yielding

Ho=) Exny, + ) Usnymyy, (7.6)
Ao A

We note that (7.6) is also the approximation to a half-filled (y¥ = 1) topologically
disordered Hubbard model used by Kamimura and coworkers [52, 53] to describe
the intermediate density regime of doped semiconductors. Equation (7.6) is formally
similar to Hg appropriate to the true atomic limit {7;;} = 0 (see (7.2) and (7.3)),
but with site energies replaced by the eigenenergies of the disordered TBH, and with
the on-site U replaced by on-state U,s; (hence ‘quasi-atomic’ limit). TBH states well
below the mobility edge are quite strongly localized. Hence, for sufficiently large U,
the corresponding U, are expected to be large enough to prevent double occupancy
of TBH states. For the small y domain under consideration, the ground state of the
interacting Hamiltonian (7.6) will thus consist of TBH states singly occupied up to an
energy Ep(y)(< E_.,) as illustrated in figure 3; and, for experimentally relevant
temperatures, a free-spin-1 Curie-law susceptibility thus results.

It is clear that these simple arguments apply to a regime of well localized states,
and will certainly break down before Ep{y) crosses a mobility edge and Fermi level
pseudoparticle states become extended, pointing up the expectation y, > y dis-
cussed in the previous section.

This discussion, while instructive, is essentially qualitative. To gain a more de-
tailed understanding of the quasi-atomic limit, and to understand even qualitative
aspects of the ground-state properties of a ‘simple’ disordered Hubbard model, as
the filling fraction y is increased through and above the gquasi-atomic regime, is
difficult. One possibility is a probabilistic mean-field approach to an unrestricted
Hartree—Fock treatment of the on-site electron-electron repulsions, carefully avoid-
ing a double mean-field approach to the latter (such as a disorder-averaged restricted
HF approximation). Steps in this direction have recently been taken [39].

To connect a result of {39] for the quasi-atomic regime to these arguments, we note
that in this small y ‘singly occupied state’ domain, the DOS or single-particle excitation
spectrum Do(EY(= 3%, D¢ ,(E)) corresponding to the approximate interacting
Hamiltonian (7.6} can be shown related to the non-interacting TBH spectrum Dg’) by:
Do(E) = LDENE) for E < Ep(y), and Do(E) = DENE) for Ep(y) < E <
E; + U. This is illustrated in figure 3 (broken curve), showing the discontinuity in
Do(E) at the Fermi level E = Ep(y), and is essentially what is found in Siringo
and Logan’s [39] mean-field approach in the quasi-atomic regime. From the previous
discussion the physical reason for the behaviour of the interacting single-particle
excitation spectrum becomes evident: because the interacting ground state consists
of states singly occupied up to the Fermi level, the energy cost of adding a hole
to {removing an electron from) an occupied state A is E, < Ep, but the cost of
adding an electron of the opposite spin to such a state is £y, + U, > Ep(y). For
E < Eg(y) the density of single-particle excitations is thus reduced by a factor of
two below the U = 0 non-interacting limit. In contrast, for E just greater than
Er{y), we can add either an up or a down spin electron to an unoccupied state, the
energy cost in either case being simply E,, so Do(E) = -D(Co)(E).

7.3. Polaronic processes

In interpreting the experiments on Cs, [CsAu], _, in the quasi-atomic regime, we have
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emphasized the role of coulombic disorder in leading to localization of pseudoparticle
states in the edge of the conduction/cation band, and the consequent enhancement of
electron correlation effects resulting in strong local moments and a Curie law para-
magnetism for the excess electrons. There is, however, another potential consequence
of disorder-induced localization; namely that the local ionic environment may distort
or adjust itself to further accommodate the localized charge, leading to a possible role
for polaronic effects [48]. Clearly, the more localized the occupied conduction band
pseudoparticle states are—i.e. the smaller their localization lengths {£, }—the greater
is the potential for such processes to play a role. And, as an obvious corollary, any
such effects will become less significant as the excess Cs content y is progressively
increased and the occupied pseudoparticle states become less strongly localized (and
ultimately extended).

The point to be emphasized is that we envisage any such processes which may
be present in Cs, [CsAu), . at low y, as being largely a further consequence of
disorder-induced localization of charge in the vicinity of cation sites with the lowest
coulombic site energies. We mention this because the earliest interpretation [13] of
the NMR experiments on liquid Cs, [CsAu], _ in the quasi-atomic domain y < yc ~
0.07 was in terms of the liquid analogue of an F centre, motivated by analogy to
the behaviour of the ‘excess’ electrons in alkali metal/metal-halide (M—MX) systems.
The existence of F centres in the sense of electron-occupied anion vacancies is well
known in the crystalline M-MXs, evidenced in a characteristic absorption band in
the red or near infrared, with Mollwo-Ivey behaviour; and supported by various
magnetic measurements. That these features persist [54] in M, [MX],_, melts at
low y immediately suggests the veracity of adopting a generalized F centre model
appropriate to a liquid—such as that studied by Senatore et af [55] in the limit of
oo-dilution—in which the primary emphasis is on an electron-occupied anion vacancy
in the liquid.

The behaviour of Csy[CsAu]I_y is, however, in contrast to the M—MXS. NMR
experiments by Dupree et al [14] have ruled out the possibility of F centres in the
crystalline near-stoichiometric solid; and we do not know of evidence for a charac-
teristic absorption band in the liquid at low y. There is, however, clear evidence that
disorder plays an important role in liquid caesium~gold; for on melting the solid the
DC conductivity drops sigrificantly [2-4] and, in contrast to the solid, there is clear
NMR evidence [13] in the liquid alloy for strongly localized excess spins as discussed
here. It is largely for these reasons that we have emphasized the primary role of
coulombic disorder, with enhancement of correlation effects and possible polaronic
readjustments being viewed in effect as attendant processes.

It should be remembered that these distinctions are in part a matter of degree, and
that various relevant physical mechanisms are not mutually exclusive. Indeed, in their
study of M-MX melts, Senatore et al [55] argue that there is no obvious contradiction
between an F centre model and one involving Anderson localization; and suggest
that the F centre bound states may be the lowest electronic states associated with an
Anderson tail to the conduction band of the solution, a view previously discussed by
Katz and Rice [56] for M-MX systems.

Nonetheless, as above, there does appear to be a difference in the properties of
Cs-Au compared with the M~MXs. This may perhaps be connected to the fact that the
stoichiometric M—Mxs are large band gap materials (A EZ ~ 6 eV for Csl through to
~ 12 eV for LiF), whereas for stoichiometric crystalline Cs—Au at its melting point
AEX ~ 2 €V [12]. In the M~-MX melts, electronic states for the initial excess electrons
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will lie sufficiently far into the gap that they are more likely to be associated with
deep trap vacancies, where the excess electronic charge primarily localizes off cation
sites. For Cs,[CsAu],_, in contrast, the lowest electronic states for excess electrons
will typically lie not more than ~ 1 eV (~ $AE}) below the edge of the crystalline
conduction band, and are envisaged as being more significantly associated with cation
sites, commensurate with [54] the experimental mean hyperfine coupling constants
for Cs in Cs,[CsAu],_, [13] as opposed 1o Cs, [Csl),_, [57).
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