
Disordered Madelung potentials and the electronic structure of ionic liquid alloys with

application to Csy(CsAu)1-y

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 3695

(http://iopscience.iop.org/0953-8984/4/14/004)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 11:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 4 (1992) 3695-3717. Printed in the UK 

Disordered Madelung potentials and the electronic structure 
of ionic liquid alloys, with application to Cs, [CSAU]~, 

David E Logan and Fabio Siringo 
University of Oxford, Physical Chemislry laboratory, South Parks Road, Oxford OX1 
3QZ UK 

Rccei~ed 13 January 1992 

Abstract We consider the distribution of Madelung potentials (MP) in liquid monovalent 
binary alloys C,A1-, exhibiting a significant degree of charge mnskr ,  with p t i cu la r  
attention to the cS.Aul-. spem. For mnonical models of ionic Liquids, and within the 
framework of linear theories such as the mean spherical approximation. the MP probability 
dislribulions are shown to be Gaussian and are sludicd in =me detail. Fluctuations in the 
effective electronic site energies, arising h m  disorder in the distribution of site m, arc 
shown to occur on the eV =le. We consider the consequences for eleamnic properties of 
this mulombic disorder, and its interplay with the ei3ecls of on-site electron correlations, 
Wilh parlicular emphasis on the Grich composition domain dose to stoichiometry. 

1. Introduction 

In a simple ionic crystal, the electrostatic potential experienced by a test charge at 
an ion is the same for all equivalent ions of a given species, as follows by transla- 
tional invariance. With the loss of long-range order consequent upon melting, this 
relatively simple situation changes. Ions in different local ionic environments in a 
liquid will typically experience different electrostatic potentials, and the Madelung 
potentials (MP) for ions of a given species are characterized by a probability distribu- 
tion. What can be learned about the M P  probability distributions for simple models 
of ionic liquids? In particular, what are the energy scales which characterize fluc- 
tuations in the distributions? And, importantly, what are the likely implications of 
this coulombic disorder for the excess electrons which result with the cation species 
element somewhat in excess of stoichiometry? 

This paper is an attempt to address some aspects of these questions. The work is 
in part motivated by the properties of the liquid alloy Cs,Au,-, in the stoichiometric 
and Cs-rich regime (z 2 4). A wide range of experiments has been performed on 
this system [l], probing the composition and temperature dependence of electrical 
conductivity [2-51, t h e r m o p e r  [3, 41 and magnetic susceptibility [6]; studies of elec- 
tromigration [7], thermodynamic and structural properties [8-111; and spectroscopic 
experiments-optical [12] and NMR [13, 141. Similarly, important theoretical work 
[15-231 has been devoted to the structural and electronic properties of the liquid 
alloy. At stoichiometry, it is hown that Cs,/,Au,/, is a molten salt-like ionic insu- 
lator consisting essentially of Cst and Au- ions. And with Cs up to - 7% in excess, 
NMR experiments [13, 141, in particular, indicate the excess electrons which nominally 
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populate the conduction band to be present in the form of localized paramagnetic 
centres, behaviour which is not observed in the corresponding near stoichiometric 
solid [14]. 

In section 2 we directly motivate the present work with reference to a simple 
model Hamiltonian for a monovalent binary alloy C,A,-,. In addition to one- 
electron contributions of tight-binding form, and on-site electron-electron repulsions, 
the Hamiltonian contains the inter-site Coulomb interactions on which we focus. With 
a Hartree field decoupling of the inter-site electron-electron repulsions, an effective 
electronic Hamiltonian arises in which the bare site energy for an electron on an ion 
is replaced by an effective or coulombic site energy, to which the net MP at that site 
directly contributes. Disorder in the distribution of site MP thus generates disorder 
in the effective electronic site energies, and may in consequence play an important 
role in determining electrical and magnetic properties of the system (as discussed in 
sections 6 and 7). 

In sections 3-5 we consider the distribution of M P t  characteristic of simple ionic 
liquids, in which the long-ranged part of the interaction potential is essentially the 
total Madelung energy arising from the model Hamiltonian considered in section 2 
This problem is a further addition to a range of different physical problems which 
have recently attracted attention, and which require a knowledge of local field dis- 
tributions of one kind or another [24]. In particular, much attention has been given 
to the distribution of electric microfields [25-32] in plasmas and ionic solutions, rel- 
evant for example to spectral line broadening in very hot plasmas. A knowledge 
of local field distributions also plays a key role in theories of inhomogeneous spec- 
tral line broadening of impurities in solids [33], liquids [34] and glasses [35]; and in 
determining average rates for incoherent electron transfer [36]. 

In section 3 we briefly formulate the current problem via a familiar charging 
strategy [37]. In section 4 the distribution of M P  is considered within the framework of 
so-called linear theories, which include as examples the mean spherical approximation 
(MSA) and the h e a r  hypernetted chain approximation. Simple graph theoretical 
argumenrs show the resultant MP distribution for ions of a given species to be exactly 
Gaussian; and when the short-ranged contributions to the interaction potential are the 
Same for both ionic species the second moment is trivially related to the fust, enabling 
a simple characterization of the full distribution via the mean. This is the case for 
the much studied primitive model of electrolytes [38], used for example by Evans 
and 210 da Gama [20] to model the experimental structure factor of stoichiometric 

kxplicit MSA results for the primitive model relevant to the distribution of MP are 
given briefly in section 5, and in section 6 they are applied to liquid caesium-gold, in 
particular the stoichiometric alloy. The behaviour of the mean liquid-state cation Mp 
is considered and, at the melting point, is compared with that of the crystalline sto- 
ichiometric alloy. Fluctuations in the MP distribution are likewise examined, and are 
found to occur on significant electronic energy scales on the order of eV. And a series 
of crude calculations on the optical density of states suggest that the experimentally 
observed 1121 melting-induced red shift of - 0.8 eV in the optical absorption edge 
of Csl/,Au,/,, may arise at least in part from fluctuations in the distribution of M P  
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t me quantity calculated in practice iE the distribution of Madelung polenrial energies for an electron 
on an ion of species CY, VM;,, = e4m,., where 4 ~ ; i -  is the MP. 'RI avoid extraneous faclors of e, we 
do not belabour the distinction, 
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which typify the liquid, and which come into play upon melting. 
In the h a 1  section we consider possible implications of the coulombically gen- 

erated site disorder for the behaviour of Cs,Au,-, with Cs somewhat in excess. 
A short discussion is fvst given of experimental properties relevant in particular 
to the domain of strongly localized spins for up to .., 7% excess Cs, and to the 
composition-controlled insulator-metal transition in the alloy. A qualitative account 
of the obsemtions from the present perspective is then given. This involves an in- 
terplay between the effects of the coulombically generated site disorder leading to 
localition of pseudoparticle states in the edge of the conduction band, and the 
consequent enhancement of electron correlation effects, resulting in strong local mo- 
ments and hence stmng paramagnetism for the excess electrons at low excess metal 
concentration 1391. The origin of this so-called quasi-atomic regime is then discussed 
more formally via a specific model Hamiltonian closely related to that considered 
in section 2 Finally, we mention the possible role of polaronic processes come- 
quent upon disorder-induced charge localization, and contrast briefly the behaviour 
of Cs,Au,-, with alkali metaumetal-halide melts. 

2. Motivation: a model alloy Hamiltonian 

We consider a monovalent binary alloy of form C,A,-, C,[CA],-,, where z = 
N c / (  N,+ N A )  denotes the mole fraction of the cation species element equivalently, 
y = (25-  1)/z = (N, - N A ) / N c  prescribes the excess cation fraction above the 
stoichiometric limit of I = $, y = 0. Each atodsite is assumed to oontain a single 
valence s electron, and for a given centre-of-mass configuration we consider the model 
Hamiltonian 

(2.14 

(2.14 

Here, a , y  denote the species (C or A), and i a , j - ,  denote sites of the appropriate 
species, with centreof-mass positions E#*, R,T; CLw /Cj7- are creation/annihilation 
operators for u-spin electrons on appropriate sites, and mi,- = CtvCiar is the 
corresponding uspin number operator. HTB is a one-electron contribution of tight- 
binding form with site energies em = cC or cA; and qy = T"Y(IRi, - is 
an inter-site electron hopping matrix element. Hintra describes on-site inter-electron 
repulsions of familiar Hubbard form. 

H&, on which we focus here, describes hrer-site Coulomb interactions and ir 
taken to have the simple form 
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where njm = 1, nj,, is the number operator for the total electronic charge on site 
i,, and 
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H& thus describes coulombic repulsions between the positively charged ion cores, 
inter-site electron/ionare interactions (terms linear in nj,), and inter-site electron- 
electron Coulomb repulsions. In arriving at (2.2) we have, for simplicity, neglected 
inter-site electron4ectron exchange matrix elements, and have taken the inter-site 
electron-ion and electron-electron interactions to have pure Coulomb form. 

?b render H&,, more transparent, we define 671;- = n;. - Rim (where the over- 
bar denotes a quantum expectation value for the given centreofmass configuration) 
and use the identity 

n j P n .  J T  = e .  b n .  17 + f i .  17 ni e - f i ; ~ f i j , + 6 n i ; 6 n j ,  (2.4) 

on the inter-site electron-electron terms in H&. The final term in (24) gives a 
contribution to H&ou, of 

The three remaining terms in (24) yield a Hartree approximation to the inter-site 
electron repulsions, the c-number term -e ;, f i j v  properly eliminating double counting 
of the Coulomb repulsions. We now neglect Xi, (and thus any consideration of the 
Coulomb gap problem [40, 411) and work within a Hartree approximation to the 
inter-site electron-electron interactions: for a given centre-of-mass configuration this 
is clearly a mean-field approximation in the quantum sense. The net ionic charge 
on site j,, arising from both the core charge and mean electronic occupancy, is thus 
2. = 1 - f i j , ;  for example, Zj7  = +1 or -1 (Ej7 = 0 or 2) corresponds to a 
'classical' cation or anion. J ?  . 

Using (24), and neglecting Hirr, (2.2) reduces after some rearrangement to 

H&"! = HCO"l+ c (2.5~) 

where 

Here, VMii- is the MP energy (see footnote p 2) experienced by an electron on site 
i,, arising bom the mean coulombic fields due to all other ions in the system 
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Similarly, EMAD appearing in the c-number term C is given by 

and is the total electrostatic Madelung energy for the g h n  centre-of-mass configura- 
tion: from (2.5) 

EMAD ( { z j 7 ) )  = n ~ i .  (2.7) 

Hcoul gives the purely quantum mechanical contribution to H&. Thus H = 
HTB + Hcou, + Hinlra gives the purely quantum contribution to H‘, and from (2.56) 
and (2.1) reduces to 

H = HTB ({ei,}) + Hint,. (2.G) 

H T B ( { e i m } )  is precisely of tight-binding form (2.16), but with the bare site energies 
C, (a = C or A) replaced by 

e;* = E ,  + v,;;* (2%) 

which is the effective site energy for an electron on site i,, including the coulombic 
fields due to all other ions in the system. The observation which motivates the present 
work is simple: in a disordered system such as a liquid, the MP felt by an electron 
on sites of a given species will clearly not be the same for all such sites, but will be 
characterized by a probability distribution which is not &function distributed. From 
(2.8b), disorder in the {VMS,} leads to sitediagonal disorder in the effective site 
energies {ei,} appearing in the electronic Hamiltoniaii (2.&), and as discussed in 
sections 6 and 7 this may play a central role in determining the electrical and magnetic 
properties of the system. What can be said about the distribution of {V,., } and 
hence the { e i w } ,  and in particular what are the energy scales which chaiicterize 
fluctuations in these quantities? Assuming self-averaging, we would thus like to know 
the probability density for VMij- Over the ensemble of ionic configurations, which we 
denote by Fa ( VM;;, ). 

Disorder in the hlps obviously stems from the disorder inherent in the centre-of- 
mass positions, {Rim} ,  of the ions. This is explicit in (26a) via the dependence of 
U? 3 U( [Ria -Rj71) on the ionic positions, and is the major feature responsible for 
the disorder in the {VMiie) considered in sections 3 and afterwards. It is also implicit 
in the { Z j 7 }  dependence of VMiie, as Z j  = 1 - Fi. and for each configuration 
the mean electronic occupation numbers { E j , )  ought, in principle, to be determined 
self-consistently from the Hartree equations corresponding to H. The usual approach 
[15-19] to the latter intricate self-consistency procedure is to simplify it by ‘coarse 
graining’ the charges: for all sites i, of each species y, Ziv is replaced by its 
ensemble averaged mean value Z,; and Z,,  Z A  are then determined by the bulk 
charge neutrality condition 

37’ 

cs72, = 0 
Y 
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(where {z-,} are the species mole fractions), together with a Hartree self-consistency 
equation for Z,/Z, at the ensemble averaged level. At stoichiometry, for example, 
(2.9) gives 2, = 121 = -ZA, where the self-consistently determined 121 reflects the 
degree of ionicity or charge transfer. 

As far as estimating the probability distribution of VW,;- is concerned, coarse 
graining of the {Z; , } ,  while likely to underestimate fluctuations in the MPs, is probably 
a reasonable first approximation for systems in which electronic charge transfer is 
significant and dominated by a sufficiently large electronegativity difference between 
the cation and anion species elements. This is the case in Cs-Au for example. 
Stoichiometric liquid C~,,,AU,,~ is an ionic insulator, with a filled valence (anion) 
band and an empty conduction (cation) band. In this split band case one clearly 
expects ej,, = 0 and ajAu 2 corresponding essentially to classical ions with ZjcL = 
+1 and ZjA. = -1. The experimental properties of stoichiometric liquid CS-Au 
indeed appear to conform to those of a 1:l molten electrolyte 111; and with CS 
somewhat in excess, the contribution of { Z .  } to the distribution of Mps potentially 
experienced by the Ne = N,, - N,, ‘excesl’electrons which nominally populate the 
conduction band is liely to be dominated by the significant degree of stoichiometric 
charge transfer. 

?b illustrate the above at its simplest, suppose that at stoichiometry charge trans- 
fer is complete so that ZjAu = -1 and Zjc, = +l; and that with Cs in slight 
excess Z,As = -1 remains. From (26a), the stoichiometric MP distribution is then 
determined solely by the disorder inherent in the centre-of-mass positions of the Cs+ 
and Au- ions, a determination of Fm(V&)  thus being essentially a problem of 
classical liquid-state theory for a 1:l electrolyte, as considered in the following sec- 
tions. In calculating Fa with Cs in slight excess, the coarse graining prescription in 
effect distributes the small number Ne = Nc, - NAu of ‘excess’ electrons uniformly 
over the cation sites, Le. ajC. = NJN,, = y is taken, with the net cation charge 
Zits = 1 - y 5 1 mainly due to the core charge appropriate to y = 0 .  Again, a 
calculation of Fe( V,,,,) essentially reduces’ to a classical liquidstate problem and 
is determined by the disorder in the centre-of-mass positions of the Cszz* and Au- 
ions. 

We too will adopt the usual 11.5-191 marse graining of {Z,,) in calculating 
Fm(VMiie) .  In particular we further note the following. 

(i) That onoelectron hybridization effects embodied in the interspecies matrix 
elements IT?,}, which even is the stoichiometrifl iand limit may act to reduce 
Z,/Z, slightly below the ‘classical’ values 117-191, are for generality assumed to be 
included in the appropriate bulk Hartree self-consistency equation which (together 
with charge neutrality (2.9)) determines the Z,s. 

(ii) Given the coarse graining prescription, electron-electron screening at the 
Hartree level are partially included in counterion screening effects of the classical 
ionic liquid (CZ~)+(AIZ*I-)l-I, since the net ionic charges therein are a composite 
of core charge and Hartree field electron occupancy. 

We now consider a potentially important omission in previous work As men- 
tioned, a Haraee approximation to the inter-site electron-electron interactions is 
mean field in the quantum sense for a given centre-of-mass configuration. However, 
much previous work concerned with the electronic structure of liquid alloys employs 
in effect a double mean-field theory. That is, mean field not solely in the Hartree 
quantum sense for a given disorder realization, but mean field also in a stalktical 
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sense: VM;;- occurring in the effective electronic site energy cia (equation (2.8b)) is, 
for each site of any species, replaced by its constant mean value (V,,,,) averaged 
OvBr the ensemble of centre-of-mass positions. The site M P  is thus, in effect, taken as 
being &function distributed on its mean. Any disorder in the electronic site energies 
arising from fluctuations in the MPs is thus entirely ignored, the mean MP simply giving 
a constant shift to each site energy of a given species; and any effects coulombically 
generated site disorder may have on electrical and magnetic properties of the system 
are hence a prim' neglected. We clearly wish to avoid a double mean-field approach. 

3. Formulation of the problem 

Wtth 

we thus consider the probability distribution Fa(VM;,J wer the ensemble of centre- 
of-mass configurations of the liquid. F,(z) and its Fourier transform pa(kl) are 
given by 

Fa(=) = (6 (Vi;* -$)) pa(ki) = ( ~ X P  (ikiVi;i-)) ( 3 4  

where (0) denotes a configurational average, the nature of which must be specified. 
We take 

(o) =/dI'e-@'(.)/ j d T e - @ *  

where = l/kT, d r  3 Ha n; dR,*, and 9, denotes a classical interaction poten- 
tial which determines the probagility with which any configuration is generated. We 
decompose 9, into pairwise additive terms 

(3.34 

and the pair potential 4 7  F +*Y(IRia -.RjJ is further separated into short- and 
long-ranged contributions: 

+?? 'f = +& + +?CO", . (3.35) 

Since we are concerned with the distribution of MPS in ionic liquids exhibiting a 
signillcant degree of charge transfer, the long-ranged part of 6 7  is taken to be the 
coulombic interaction between ions of species CY and 7 ,  i.e. 

+ ~ c c o u ,  = Z a U 2 Z ,  (3.44 

with V , y  as in (2.3). Notice from (2.66) and (2.7) (with Z j ,  -+ 2,) that 9, is thus 
decomposed as 

9, = @SR + EMAD (3.46) 
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where EMAD = arises from the inter-site Coulomb Hamiltonian considered 
previously. The short-ranged interactions, necessary to ensure thermodynamic sta- 
bility, do not at this stage need to be specified. Later we consider explicitly the 
case where the +:J( R) are hard sphere interactions, the equisized limit of which 
corresponds to the much studied primitive model [38]. 
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Equation (3.2) for pa(kl)  may be written using (3.1) as 

with 

(3.54 

(3.56) 

and is formally equivalent to 

F 0 ( W  = e w  (-OAP,) 

where Ape is the excess interaction chemical potential for the 'tagged' ion i of species 
01 when it additionally interacts with the other ions in the liquid via the complex 
'potential' U,';'. Ap, may be calculated via the standard Onsager-Kirkwood-Widom 
charging strategy 137, 421 whereby one 'charges up' the additional interaction of the 
tagged particle with the other ions. This leads to 

d R U ( R ) h , , ( R ; A )  

Here, U(R) = e2/(47re,R), p, = px, is the partial 'number density of species y 
ions; and he,( R ;  A) = gey(R;  A) - 1 is the partial pair distribution function (PDF) 
for an effective liquid in which the tagged ion of species a at the origin interacts with 
ions of species y via the effective pair potential 4 7  -f XU?. 

A Madelung potential distributions: linear theories 

To calculate the distribution we thus need h , , ( R  A). This we consider within 
the class of linear graphical theories which include as examples the mean spherical 
approximation (MSA), the linear hypemetted chain approximation (LHNC) and the 
linear exponential (LFXP or UN) approximation [371. The essential result here is that, 
for a linear theory, the MP distribution for ions of species 01 2 C or A is exactly 
Gaussian; and that in a particular simple but relevant case the second moment of the 
distribution is trivially related to the first, enabling a complete characterization of the 
distribution solely from a laowledge of the first moment M , ,  = (VMkia). The brief 
proof we now give is based on graphical arguments; the same result follows from a 
detailed analysis of the relevant integral equations appropriate to a particular linear 
theory. 

Consider first h, , (R)  = h,,(RA = 0), the partial PDF of the actual ionic 
liquid. This may be analysed formally [37, 431 by regarding the short-ranged part 
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of the total interaction potential as a reference system, and developing a graphical 
expansion for h,,(R) in terms of reference system bonds wayer  f-bonds or PDFS 

for the reference system), p,circles and W " ( i j )  -p+$cou, bonds pertaining to 
the interionic Coulomb interactions. We employ the notation h,,(R) h=,(l,Z) 
where 12 label the root points (RP) and are shorthand for R, , &, the centre-of-mass 
positions of the ions of species a and y respectively, such that R = IR, - 41. 

.I\No essential approximations which characterize any linear theory are: 
(i) the maximum number of @as bonds which intersect any field point (FP) is 

(ii) at most one @ra bond is connected to a RP. 
two; and, central to the present discussion, 

From (E) we may formally decompose h,,(l,Z) as 

h,,(l,Z) = h&0?(1,2)+ hC4(?(1,2) (4.1) 

where ht;( 1,2) is the contribution to ha,( 1,2) in which no GO6( 1, j )  bond is 
connected to RPl associated with the ion of species a; and hc;(l,2) is the sum of 
all contributions in which a single W 6 ( 1 , j )  bond is sa connected. 

he,( R; A)  appearing in (3.6) has precisely the same 
topological structure as h,,(1,2), but with @y6(1, j )  bonds connecting to the w1 
associated with the tagged species a particle, where 

The function ha,( 1,2; A)  

@ ? 6 ( 1 , j )  = @ ( l , j )  + [ - p A u q l , j ) ]  

From (U) above it follows that hio;( 1,2; A)  = h?$( 1,Z);  and, using (4.2), that 

h,,(l,Z;A) = h g ( 1 , 2 ) f h g ( 1 , 2 ; A )  (4.3a) 

where 

Hence using (4.1) we have the desired result that 

where the entire k,A dependence of h,,(l,2; A)  is explicit. 

of any linear theory, the MP probability distribution is exactly Gaussian: 
Since hey(& A )  is linear in Ak,, it follows from (3.6) that within the framework 

The mean M p  for ions of species cy, M,, = (VMiie), is given simply by 

7 J 
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and the second moment M,, = ( [ V ~ ; i ~ - ( V ~ , i ~ ) ] z ) l / ~  characterizing the fluctuations 
is given by 

D E  Lagan and F Siring0 

The disnibution is thus naturally controlled by the structural characteristics (or chem- 
ical short-ranged order) of the ionic liquid, embodied in the partial F'DFs. 

That the MP distribution is Gaussian stems from the linearity of (4.4) in A,X, 
which is the essential feature of a linear graphical theory. In a wider context, one 
expects generic local field distributions [a] to be Gaussian within the framework 
of linear theories. For example, Lado [ZS] has shown the distribution of electric 
microfields to be Gaussian within the MSA for a one-component plasma; and Vericat 
et al [31] (see also Blum and Hubbard [32]) find the same for the MSA microfield 
distribution appropriate to ionic and polar solutions. 

The result (4.66) for the second moment of the M P  distribution simplifies usefully 
when the short-ranged interactions which characterize the reference system are the 
same for all species, so the reference liquid is in effect a one-component system. 
This is the case, for example, with the much studied primitive model of electrolytes 
[XI, where the charged hard spheres of the various species have equal hard-sphere 
diameters. The basic structure of graphs contributing to h,,(T,2) in any linear 
theory is a connected polygonal chain of @ P 6 ( j , k )  and/or reference system bonds 
extending from RPI to RP~ ,  with the possibility of subsequent decoration by reference 
system bonds alone. For a one-component reference system, an m k in any such 
graph which is intersected by n = 1 or 2 @ P s ( j , k )  bonds is associated with a 
factor of p, and hence in total with a factor of Ea p,Zr .  The bulk charge neutrality 
condition Cs p, Z, = 0 thus implies that an m can he intersected by two or zero @ P s  
bonds only. As h?;( 1,2) is defined to be such that no Qoa (1, k) bonds connect to 
RPI, it follows that @(12) contains reference system bonds alone, and is simply the 
PDF for the reference system appropriate to the specijic linear theory. Wr example, 
with an equisized hard-sphere reference system appropriate to the primitive model, 
h(')( R) E h?;( R) is the Percus-Yevick approximation to the hard-sphere PDF withiin 
the MSA [37, 431, and is the full hard-sphere PDF for LHNC 

Since h?;(R) is independent of the species for a one-component reference sys- 
tem, it follows from (4.6) using bulk electroneutraliry that 

This result enables a particularly simple characterization of the full M P  probability 
distribution (4.5) solely from a knowledge of M,,, equation (4.60). Different linear 
theories will naturally correspond to different specific approximations to the partial 
PDES, h,,(R), of the ionic liquid; a specific case is now discussed. 

5. Primitive model: MSA 

Here we consider the M P  distribution within the MSA for the primitive model of a 
hinary electrolyte. The MSA primitive model is of relevance to liquid (s-Au, as it 
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has been employed with some success by Evans and RI0 da Gama [ZO] to model the 
experimental structure factor of stoichiometric liquid (s-Au, and by Holzhey el a1 
(191 in their double mean-field study of alkali-gold alloys. 

From (3.4b), the excess internal energy per ion (over the refrence system) is 
U e x / N  = ( h A D ) / N  with N = N ,  + NA the total number of ions; and thus b m  
(2.66) (with Zj7 -+ Z,) 

(5.la) 

For the primitive model, h?;( R) z h(O)( R) within a linear theory as discussed above, 
and h&1?(R) is of the form Z,C(R)Z,. From (4.1) and (4.k) together with the 
bulk electroneutrality condition, it follows that Z,(V,;,,) = ZA(Vwic), and (5.1~) 
reduces to 

Knowledge of Uex/lV is thus sufficient to give Atle = (V,,,,). For the MSA, 
Wisman and Lebowitz [44] have given the excess internal energy in closed form. It 
is a function of the MSA coupling constant E given via = ETIZAZcl where 

e; = 47rp.p’. (5.24 

p’ = p a 3  is the reduced density, with o the hardsphere diameter of the constituent 
ions; and we have defined the reduced inverse temperature by p’ = /3[e2/4~c,o]. 
From the charge neutrality condition (2.9), Z, = -( 1 - y)ZA, whence 

E ,  = (1 - Y , Z X  (5.26) 

with y = 0 corresponding m the stoichiometric alloy. From Wisman and Lebowitz’s 
results [U], and using @U), M l , ( a  = C or A) is thus given in closed form by 

(5.3a) 

with 

A( [ )  = z [l + E - (1 + 25)’/’] . ( 5 . 3 )  € 
Note that A(E) -* E as -+ 0 corresponds to the Debye-Hiickel limit; and A(E) 4 2 
as < + 00 corresponds to the Onsager bound 1451 on the excess intemal energy, 
reflected in a saturation of At,, as E -, 00. In the molten salt regime, relevant 
to our subsequent discussion of Cs-Au, E s 20 is typical. We also add that the 
accuracy of the MSA for M,, can be assessed by comparison of the MSA for U e x / N  
with Larsen’s [46] Monte Carlo simulations of the restricted primitive model (i.e. at 
stoichiometty, x, = i): in the molten salt domain the MSA reproduces U e X / N  to 
N C 5% accuracy, which is wholly adequate for present purposes. 

With M,,  given from (5.3), M,, folloas from (4.7), and the MA M P  probability 
distribution Fe(+) (equation (4.5)) is thus specified. 
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6. Application: CS,,~AU,~~, liquid and solid 

In figure 1 we illustrate the MSA results for the case of stoichiometric Cs-Au (y = 0), 
which is !mown experimentally [l] to be a molten salt ionic insulator. The mean 
Liquid-state cation MP, M,, (in ev), and the root mean square (RMS) fluctuation in 
the distribution, M,,, are shown as the temperature is increased from the melting 
p i n t  TM = 590 OC From the results of Martin a ol [lo], the ionic number density at 
T, is p N 2.24 x loz2 and since p wries very little over the temperature range 
of figure 1 we have taken this wlue throughout. From the work of Evans and El0 
da Gama [ZO], we take the effective hard ion diameter o = 3.15 4 thus p* = 0.70, 
typical of a molten salt. At stoichiometry, Z, = IZI = -ZA, and we have illustrated 
the MSA results for MI, and M,, for two choices of IZI = 1 and 0.8. The fOrtIIe1 
corresponds to total charge transfer with ‘classical’ ions, and although this is largely 
the consensus choice in describing experimental properties of the stoichiometric alloy, 
we consider also the case IZI = 0.8 to illustrate the possible role of partial charge 
transfer due m one-electron hybridization effects studied by Holzhey el a1 [17-191. 
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Figure t Mean liquid-state cation MP energy ( M , c ) ,  and RMS fluctuations ( M z c ) ,  
obtained from he primitive model m A  with pramelen appropriate to stoichiometric 
(Ir-Au, as a function of T (in T) &om the melting point Cr, = 590 T). Results for 
diaerent values of IZI (= Z, = -Zn) are shown. For T < T,, corresponding solid 
state values for the mean are shown (see text). 

Consider first the mean cation M p  (note that MI, = -M,, and MZA = M,, 
at stoichiometry). As seen from figure 1, MI, is only very weakly T-dependent but 
is naturally sensitive to the degree of charge transfer, embodied principally in the 
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explicit Z, hctor in equation ( 5 3 ) .  In particular, for the liquid at its melting pint ,  
we find M,, = 6.83 eV (for IZI = 1) and 5.28 eV (for 121 = 0.8). 

It is now instructive to calculate the MP energy for the crystalline stoichiometric 
Cs-Au alloy, which has the CsCl structure. This is given by (a C or A) 

e2 
Vw, (solid) = Z, 4 m o r 0  - 7 

where y = 1,762670 is the Madelung constant for the CsCl structure and r0 = 
&a/2  is the nearest-neighbour distance with a the lattice constant. We note the 
similarity in form between the solid state result (6.1) and the MSA result @?a) for 
the mean liquid state hw, A ( [ ) / u  in the latter playing essentially the same mle as 
y/ro in the former. From the work of Spicer er a1 [47], a = 4.263 A for crystalline 
CsllzAu,/,, so (6.1) yields V,,,(solid) = 6.87 eV (for 121 = 1) and 5.50 eV (for 
12) = 0.8). Notice that the two parametrically unrelated calculations-for the solid 
and the liquid at its melting point-are extremely close as illustrated in figure 1, being 
within < 1% of each other for 121 = 1. 

We now consider fluctuations in the MP, which clearly have no natural analogue 
in the crystalline solid but which typify the liquid, and which as discussed in section 2 
lead to disorder in the effective site energies { e j m }  appearing in the model electronic 
Hamiltonian (2.8). As is evident from figure 1, the MSA RMS fluctuations M,, are 
quite insensitive to either temperature or the degree of charge transfer (Mzc for 
121 = 0.8 lying between those shown for 121 = 1 and 0.6). More importantly we 
note that fluctuations in the MPs, and hence the electronic site energies, occur on an 
appreciable energy scale of - 3/4 eV; possible implications for which are discussed 
later and in the following section. 

These comments refer to stoichiometric CS-Au, y = 0. 'Ib estimate the effect 
upon MP fluctuations of increasing the cation species somewhat above stoichiometry, 
note from (4.7) and (5.3) that 

M,, = '[ 47rcou L k T A ( E ) ]  . 

For given T, the dependence of fluctuations on the (interdependent) variables y, lZAl 
and p* is contained solely in A(E), (5.3b), with E = IZAl[(l - ~)4?rp 'p ' ] ,~ /~ ;  and 
[A(E)]'/Z is a monotonically increasing but slowly varying function of E,  increasing 
by only - 10% over the wide range 10 < < 35 which encompasses any reasonable 
E domain of interest. For example, at T = 6 4 0 c  and for y in the range 0-5 
(where the experimental DC conductivity [SI is 5 600 C2-I an-'), E lies in the 
range - 2212,l to - 161ZAl using experimental densities from Martin et af [lo] and 
Kempf and Schmutzler [l]; and Mzc varies only very slightly about - 0.7 eV for any 
reasonable estimate [19] of lZAl in this y interval. In contrast, as expected, the mean 
liquid-state cation M P  M , ,  diminishes on the eV scale over this y range, due mainly 
to the explicit factor of 2, = (1 - y)lZAl appearing in (5.3a) for Mlc 

Although the preceding theory is designed to estimate the M P  distribution in 
ionic liquids exhibiting a non-negligible degree of charge transfer, and should not be 
pushed too far, we note that as y + 1 the MSA Fa(VM,.J 3 b(VMitJ as expected 
for the non-ionic pure C species element where, given the usual coarse graining 
prescription described in section 2, the electrons completely screen out the C+ core 
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charge for y = 1. Experimentally [lo], the pure Cs element reached as y + 1 in the 
Cs,[CsAu],-, alloy has r J a ,  - 6 (where $ r p r :  = I), typical of a fairly high density 
liqtud metal; and one might reasonably model the system as an interacting electron 
gas in this limit. That Fm(VM,+) = 6(VM;ja) for y = 1 as above may however be 
regarded as an analogue of the fact that, for an electron gas, the potential Celt by an 
electron due to the ion cores is precisely cancelled by the direct (‘bubble diagram’) 
interaction describing the Hartree potential arising from the other electrons. In the 
electron gas the electrons do not totally screen the core charge, but are certainly 
highly effective in this regard for example, with r J a ,  - 6 ,  X/r, - where X is the 
Thomas-Fermi screening length. 

XI see a possible implication of disorder in the distribution of effective electronic 
site energies { E ; , }  (equation (286)) arising from the distribution of MPs, we consider 
again the stoichiometric alloy CsIl2Au,,,. In figure 2 we show schematically the zero 
order electronic density of states (DOS) D o ( E )  arising if we neglect coulombically 
generated site disorder, and consisting at stoichiometry of a filled valence (anion) 
band and an empty conduction (cation) band separated by a gap. Also shown are 
the distribution of effective site energies for cation and anion species sites, which are 
essentially (see (286)) just the Gaussian MP distributions for ions of the appropriate 
species. Clearly, a fraction of the ions will have effective site energies lying outside 
the unperturbed bands. What this implies when the ms is calculated including the 
coulombically generated site disorder is that the DOS will ‘smear out’ somewhat into 
the gap, which is thus reduced from its zero-order value. 
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Figure Z Schematic illustration of stoichiometric zero-order electronic w$ D”(E)  
(chain c u ~ e ) ,  arking if mulombic sile disorder is negleaed; and consisting of filled M- 
lence and empty conduction kmds separated by a gap AE:. ?be Gaussian distributions 
of coulombic Site energies for cation and anion species sites are also shown (full Nmes). 

An ab initio calculation of the band gap in the stoichiometric liquid alloy is 
exceedingly difficult; and previous theories, which neglect MP fluctuations, in effect 
choose model parameters to fit the gap. As hinted above, however, we can assess 
the relative shift in the band gapreflected for example in the optical Dos-when 
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we. bring into play fluctuations in the ms, and hence site energies, which are typical 
of the liquid. This should pmvide a rough estimate of the sort of shift one might 
expect in the optical absorption edge when the crystalline solid is melted, assuming 
the principal change in the band gap on melting arises from the introduction of 
fluctuations in the distribution of ms; and, in particular, that the mean ionic M P S  in 
the liquid (Mlc = -MIA) at its melting point do not differ appreciably from those 
for the crystalline solid-which, as above, appears to be the case for Cs,/,Au,/,. 

'RI estimate a typical magnitude of the shift, we consider the optical DOS (to which 
the optical absorption is essentially proportional [a]) 

Dopt(W) = SE' D(E)D(E+Aw)dE 
E F - h  

as a function of photon energy tw. The ODOS is first calculated without MP fluctu- 
ations (as would be the case for the solid), with a known band gap A E& which we 
take to be 21 eV-the gap for stoichiometric crystalline CsllZAu,/, at its melting 
point found experimentally by Munster and Freyland [IZJ. We denote this by D&(w) 
and estimate it very simply by assuming a simple semi-elliptic DOS for the zero-order 
valence and conduction bands. These have widths W i  and I@ respectively, and are 
centred on e: and e: (with e: - 6; chosen so the given A E& is reproduced), where 
the effective e: implicitly include effects due to the mean M P  and on-site correlations 
at the Hartree level. We then calculate D( E) = &(E)  + Dc( E) in the pres- 
ence of the coulombically generated site disorder. In practice, the ionic site energies 

f ( v M ; i p  - (VMiim}) are treated as independent random variables with a 
Gaussian distribution for of halfwidth (21n 2)1/zM2a = 0.84 e y  obtained via 
the MSA from the known densiry and temperature of stoichiometric liquid Csl~,Aul/, 
at its melting point (as in figure 1); and Dv( E), Dc( E) are estimated very smply by 
a simple single-site approximation [49] requiring solely a knowledge of W i ,  Wg and 
the site energy distribution. The resultant DQpt(w) is then compared with Dzpt(w), 
and the shift to lower w in the edge of Dopt can then he assessed. 

These calculations should not be taken too seriously but, as one might expect 
physically, we Iind the shift to he of the order of the halfwidth of the coulombic site 
energy distribution, (21n2)'~2M,, - 0.85 eV as above. In fact, with W i / W z  in 
the range Wi - 4-7 e\! Wg - 24-5 eV (encompassing previous estimates [17-19]), 
and with AE$ also scanned over a wide range of - 2-6 ey we lind the shift to lie 
in the range - 0.8-1.2 eV. 

Albeit that this shift estimate is crude it is interesting, and perhaps not coinci- 
dental, that Miinster and Freyland [I21 observed a discontinuous redshift of about 
0.8 eV in the optical absorption edge of stoichiometric Cs,/2Au,,, when the solid 
was melted: the observed volt-scale, melting-induced shift may stem largely, or at 
least in part, from fluctuations in the distribution of ms which Iypify the liquid, and 
which come into play when the solid is melted. 

= 

7. Discussion: Cs, [CsAu],-,,y > 0 

The stoichiometric split-band alloy CA, on which we have mainly focused, is effectively 
a zero-particle problem in the sense that there are no holes in the valence (anion) 
band and no electrons in the conduction (cation) band. We now consider the likely 



3710 

effect of the coulombically generated site disorder on the Ne = N ,  - N A  'excess' 
electrons as the excess cation fraction y(= N , / N , )  is increased above stoichiometry, 
y = 0. 

The experimental properties of liquid Cs,[CsAu],-, with Cs in excess are rich. 
In particular, a 133Cs NMR study by Dupree et al [13] of the Knight shift, K, and the 
spin-lattice relaxation rate, T;', points clearly to the existence of strongly localized 
spins for y up to - 0.07 (7% excess 0). IC is proportional to the electronic 
paramagnetic spin susceptibility Xep. For 0 < y 5 0.07, IC is observed [13] to be 
linear in y, commensurate with a free-spin-: Curie law paramagnetism for the excess 
electrons, which is also supported by the direct magnetic susceptibility measurements 
of Freyland and Steinleitner [6]; and above y, = 0.07 this behaviour is rapidly lost. 
In the Same y range, an enhanced T;' characteristic of strongly localized spins is 
also observed [13]. The features just described are not observed in the crystalline 
near-stoichiometric alloy [14], for which no evidence is found for excess localized 
paramagnetic centres. 

At what value, y,, of y does a composition-induced insulator-metal transition 
(I-MT) occur in the liquid alloy? Experimentally one would like to answer this 
via electrical conductivity measurements, but the experiments [2-51 are of necessity 
performed at elevated temperatures (T - 600T) and precise sample control is 
demanding; an unambiguous answer is difficult to obtain. Previous conductivity studies 
[2-4] suggest an I-MT around y, - 0.21 (where udc - 450 0-1 cm-' from recent 
measurements [5]), and it is worth noting that the work of Avci and Flynn [SO], 
and Swenumson and Even [51], on amorphous Cs,[CsAu],-, in the temperature 
range T - 5-20 K suggests an I-MT around y - 0.3. The above NMR results 
[13] are certainly consistent with localized electronic states for y 5 0.07; and at 
y = yc N_ 0.07, udC N 130 a-' cm-' [5] which is sufficiently below any reasonable 
estimatc of U,,,," that we expect y, > y,. (Further, as argued physically later, 
we do not think it reasonable to infer an I-MT from the onset of a diminution in 
IC or Xep below a linear dependence on y characteristic of free-spin-; Curie law 
paramagnetism.) All one can say with some confidence is that y, probably lies 
somewhat in excess of y,. 

% I .  Qualitative considerations 

We first attempt a qualitative account of the observations from the viewpoint of the 
present work, involving an interplay between disorder and the effects of electron 
correlation. Referring to figure 1, we pointed out that a fraction, f-, of cation 
sites will have effective coulombic site energies lying below the lower edge of the 
unperturbed conduction/cation band, extending somewhat into the gap region. As a 
rough order of magnitude estimate, we find from the MSA F(V,,ic) with parameters 
appropriate to Cs,[CsAu],-, at low y for the temperature range T - 600-800 @C, 
and with zero-order cation bandwidths Wg - 2-4 eV, that f- has a fairly small value 
typically in the range 1-10%. 

Regardless of the precise means of modelling, we expect pseudoparticle states 
in the low-energy edge of the conduction band DOS to be localized, mainly by the 
effects of the coulombic site disorder. For relatively small amounts of excess Cs, we 
thus expect physically that the Ne = N,, - N,, excess electrons will occupy such 
localized states, centred around cation sites with the lowest coulombic site energies- 
those sites whose local ionic environment is energetically most favourable in terms of 
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the local coulombic fields experienced by the electrons. The system would therefore 
be insulating. 

That, however, is only part of the problem-for the greater the tendency is to- 
wards coulombically induced localization of the excess electrons, the greater the extent 
to which electron-electron interactions will act to prevent double occupancy of the 
relevant states. That is, in consequence of disorder-induced charge localization, the 
excess electrons at sufficiently low concentration will be highly correlated, electrons 
of the opposite spin being effectively precluded from an occupied spatial region by 
the effects of electron-electron interactions @oth on-site and inter-site in general). 
For sufficiently small excess CF concentrations, we thus envisage the occupied peu- 
doparticle states in the edge of the conduction band to be essentially non-overlapping 
and singly occupied by electrons. In consequence, it follows that in such a low-y 
domain the paramagnetic spin susceptibility per cation site, xep, will follow a free 
spin-; curie law, ie. 

Both xep and hence the Knight shift, IC, should thus be proportional to y in 
CF,[CsAu],-,, as observed for y < yc - 0.07 [13]. We add that arguments based on 
disorder alone are unlikely to suffice: if electron correlation effects were irrelevant, 
we would expect essentially doubly occupied pseudoparticle states, leading to a Pauli 
paramagnetism for the excess electrons with an expected y dependence x,, - y1I3. 

'Ib point up the above, note that we do not assume the localized pseudoparticle 
states occupied by the excess electrons at low y to be atomically localized on single 
cation sites: the states may, and in general will, extend over several such sites. 'Ib 
obtain (7.1) we simply require y sufficiently small that the localization lengths Ex 
of the occupied pseudoparticle states are small compared to the mean separation 
between the excess electrons, so the singly occupied states do not overlap each other 
in space. Provided this is the case, a free-spin-$ Curie law paramagnetism for the 
excess electrons will result, as it would for the case of genuine 'atomic' localization; for 
this reason, we refer to the y domain in which a free-spin-; Curie law paramagnetism 
results as a quasi-atomic regime [39]. 

These arguments have a further implication. The smaller the localization length, 
Ex, of a pseudoparticle state, the greater the extent to which electron correlation 
effects are enhanced, suppressing double occupancy of the state. Physically, we 
expect FA to increase with increasing pseudoparticle state energy, tending to infinity 
as a mobility edge is approached from below. Further, with increasing population of 
the conduction band (increasing y), the mean separation between the excess electrons 
will decrease. The free-spin-$ Curie law paramagnetism symptomatic of the quasi- 
atomic regime is indicative of the excess electrons being in non-overlapping singly 
occupied localized states; and erosion of this behaviour as y is further increased will 
occur when some of the occupied pseudoparticle states overlap each other in space. 
From the above, this process will begin to occur when the occupied states are still 
localized; that is still in the insulating domain, below the critical y, at which Fermi 
level pseudoparticle states become extended Over a finite fraction of the macroscopic 
system (EF -+ 03) and the transition to a metallic state occurs. We thus expect 
yM > yc where yc is the excess Cs fraction at which the paramagnetic susceptibility 
begins to deviate below a free-spin-: Curie law paramagnetism. (Quantitatively, 
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however, all we can say is that y, - 0.07 is compatible with the rough estimate of 
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f- - I-lO%.) 
Z2. The quasi-atomic hi! 
'Ib see the origins of the quasi-atomic regime from a specific model, we consider a 
simple one-band description of the conduction band (cf equations (2.9, ( Z l b , ~ ) ) :  

H c  = HTB ( { e i c } )  + Hintra (74  

As in (2.86), eic = e, + VMiiC includes the coulombically generated site disorder; 
and the sums now run over cation sites only, with Tij = T(lRj, - Rjcl) and the 
on-site Hubbard U referring to cation sites. H ,  is just a simplification of the model 
H considered in (ZSa), for if one-electron hybridization mavix elements (T,?."} are 
neglected H is separable, H = H A  + H,, with H A  pertaining to the aniodvalence 
band and H ,  as above. The simplification is physically reasonable provided conduo 
tion band pseudoparticle states are primarily associated with the cation sites, but we 
make it largely for convenience: much of what follows can be extended with labour 
to the full H. 

The disordered Hubbard model H ,  can clearly be canonically transformed [52, 
531 from a site basis m a representation in terms of the exact eigenstates of 
the Hamiltmian in the U = 0 non-interacting limit (i.e. the disordered tigbt-binding 
Hamiltonian (TBH), HTB({eic})), with basic operators Ctm and CAU. Specifically, 

(7.4) 

where ai& is the coefficient of the site atomic orbital 1;) in the expansion of the TBH 
eigenstate I*,) with energy E, : IQ,) = x i  
~c = C~. in .xo  + 

This leads to 

U X ~ ~ T  c+ c v r  c+ p i  c ri ( 7 . 5 ~ )  
X,U L v , ~ , r  

E,n,, + = UxnArnxL + (terms excluding X = Y = p = 7) 
A 

(7.56) 

where 

u~~~~ = ~ C a : , a ~ ~ a ; ~ a , ~ .  

U,,, ,  is given by 

i 

In particular, U, 

U ,  = U L ( E , )  
i 

(7.5c) 
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where L(E,) is the inverse participation ratio (IPR) fcr a ’IBH state of energy EA, 
which vanishes for an extended state and is finite for a localized state, with [L(E,)]-’ 
a rough measure of the number of sites participating in the state. The interplay 
between disorder and correlation is thus evident in UAvpr  in general, and U, in 
particular, for the latter is an effective ‘on-state’ Hubbard-U for a TBH state of energy 
E,; and its magnitude is determined by the extent to which the state is localized, 
increasing for more strongly localized states. 

We now consider the system at a low filling fraction y = N J N ,  such that, for 
U = 0, only a small fraction of TBH conduction band ’tail states’ are occupied in the 
non-interacting ground state. The non-interacting ground state thus consists of ?BH 
states doubly occupied up to an energy Eg(y). This is illustrated in figure 3 which 
shows schematically the lower region of the conduction band DOS in the U = 0 
non-interacting (TBH) limit, denoted by @)(E) (full awe). A region of ’IBH 
states is assumed localized by the effects of disorder, with a mobility edge EmOb 
separating the localized and extended portions of the spectrum as shown. And y is 
assumed sufficiently small that the occupied IBH states are quite strongly localized 
(with Eg(y) Q Emob), so such localized states will typically not overlap in space. 

Figure 3. Schematic illustration of the lower region of mnduction band m appropriate 
10 small y in the U = 0 non-interacting’rw limit (Dc’ (E) ,  full cuwe); Emob denotes a 
mobility edge, and E i ( y )  the U = 0 Fermi level. D c ( E )  appropriate U, the interacting 
Hamiltonian equation (7.6) is also shom (broken curve) together with mrresponding 
Fermi lwel Ep(y) .  under conditions detailed in text. 

We now envisage ‘switching on’ the on-site electron-electron interactions embod- 
ied in the Hubbard U, regaining the full H,, equation (7.5). Erms in (7.56) over 
and above the diagonal on-state U, interaction, such as spin-flip exchange terms of 
form 

involve on-site overlap of distinct TBH states, embodied in lai,IZlu,,12(v # A). The 
argument that strongly localized TBH states will typically not overlap in space implies 
that if X and v ( #  A) are such a pair, then I Q ~ , ~ ’  and l ~ ~ , 1 ~  will not typically both 
be appreciable. As a first approximation, therefore, and given our consideration of 
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small y, we retain only the first two terms of (7.5b) yielding 
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HC + U A n A t n , l .  (7.6) 
A 

We note that (7.6) is also the approximation to a half-filled (y = 1) topologically 
disordered Hubbard model used by Kamimura and coworkers [52, 531 to describe 
the intermediate density regime of doped semiconductors. Equation (7.6) is formally 
similar to H, appropriate to the true atomic limit ITij} = 0 (see (7.2) and (7.3)), 
but with site energies replaced by the eigenenergies of the disordered ‘IBH, and with 
the onsite U replaced hy on-state UAs; (hence ‘quasi-atomic’ limit). TBH states well 
below the mohilily edge are quite strongly localized. Hence, for sufficiently large U, 
the corresponding U, are expected to be large enough to prevent double occupancy 
of ‘IBH states. Far the small y domain under consideration, the ground state of the 
interacting Hamiltonian (7.6) will thus consist of TBH states singly occupied up tu an 
energy EF(y)(< ,Emeb) as iJIustrated in figure 3; and, for experimentally relevant 
temperatures, a free-spin-4 Curie-law susceptibility thus results. 

It is clear that these simple arguments apply to a regime of well localized states, 
and will certainly break down before EF(y) crosses a mobility edge and Fermi level 
pseudoparticle states become extended, pointing up the expectation yM > y, dis- 
cussed in the previous section. 

This discussion, while instructive, is essentially qualitative. TI gain a more de- 
tailed understanding of the quasi-atomic limit, and to understand even qualitative 
aspects of the ground-state properties of a ‘simple’ disordered Hubbard model, as 
the filling fraction y is increased through and above the quasi-atomic regime, is 
difficult. One possibility is a probabilistic mean-field approach to an unrestricted 
HartreeFock treatment of the on-site electron-electron repulsions, carefully avoid- 
ing a double mean-field approach to the latter (such as a disorder-averaged restricted 
HF approximation). Steps in this direction have recently been taken [39]. 

?b connect a result of [39] for the quasi-atomic regime to these arguments, we note 
that in this small y ’singly occupied state’domain, the DOS or single-particle excitation 
spectrum D,(E)(= $ E, DC,<(E))  corresponding to the approximate interacting 
Hamiltonian (7.6) can be shown related to the non-interacting TBH spectrum D$) by: 
& ( E )  = + @ ) ( E )  for E < EF(y), and & ( E )  = $ ) ( E )  for EF(y) < E &: 
EL + U. This is illustrated in figure 3 (broken curve), showing the discontinuity in 
Dc(E)  ai the Fermi level E = EF(y), and is essentially what is found in Siringo 
and Logan’s [39] mean-field approach in the quasi-atomic regime. From the previous 
discussion the physical reason for the behaviour of the interacting single-particle 
excitation spectrum becomes evident: because the interacting ground state consists 
of states singly occupied up to the Fermi level, the energy cost of adding a hole 
to (removing an electron from) an occupied state X is E, < EF, but the a s t  of 
adding an electron of the opposite spin to such a stale is E, + U, > EF(y). For 
E < EF(y) the density of single-particle excitations is thus reduced by a factor of 
two below the U = 0 non-interacting h i t .  In contrast, for E just greater than 
EF(y), we can add either an up or a down spin electron to an unoccupied state, the 
energy cost in either case being simply E,, so D,( E )  = Dg)(  E) .  

7.3. Polaronic processes 
In interpreting the experiments on Cs,[CsAu],-, in the quasi-atomic regime, we have 
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emphasized the role of coulombic disorder in leading to localization of pseudoparticle 
states in the edge of the conductionkation band, and the consequent enhancement of 
electron correlation effects resulting in strong local momenrs and a Curie law para- 
magnetism for the excess electrons. There is, however, another potential consequence 
of disorder-induced localization; namely that the local ionic environment may distort 
or adjust itself to further accommcdate the localized charge, leading to a possible role 
for polaronic effects [a]. Clearly, the more localized the occupied conduction band 
pseudoparticle states are-ie. the smaller their localization lengths {EA}-the greater 
is the potential for such processes to play a role. And, as an obvious corollary, any 
such effects will become less significant as the excess Cs content y is progressively 
increased and the occupied pseudoparticle states become less strongly localized (and 
ultimately extended). 

The point to be emphasized is that we envisage any such processes which may 
be present in Cs,[CsAu],-, at low y. as being largely a further consequence of 
disorder-induced localization of charge in the vicinity of cation sites with the lowest 
coulombic site energies. We mention this because the earliest interpretation [I31 of 
the NMR experiments on liquid CS,,[CsAu],-, in the quasi-atomic domain y < yc - 
0.07 was in terms of the liquid analogue of an F centre, motivated by analogy to 
the behaviour of the ‘excess’ electrons in alkali metal/metal-halide (M-MX) systems. 
The existence of F centres in the sense of electron-occupied anion vacancies is well 
! a o m  in the crystalline M-MXS, evidenced in a characteristic absorption band in 
the red or near infrared, with Mollwo-Ivey behaviour; and supported by various 
magnetic measurements. That these features persist [54] in MYFIX],-, melts at 
low y immediately suggests the veracity of adopting a generalized F centre model 
appropriate to a liquid--such as that studied by Senatore et a1 [551 in the limit of 
codilution-in which the primary emphasis is on an electron-occupied anion vacancy 
in the liquid. 

The behaviour of Cs,[CsAu],-, is, however, in contrast to the M-Mxs. NMR 
experiments by Dupree el a1 [I41 have ruled out the possibility of F centres in the 
crystalline near-stoichiometric solid; and we do not know of evidence for a charac- 
teristic absorption band in the liquid at low y. There is, however, clear evidence that 
disorder plays an important role in liquid caesium-gold; for on melting the solid the 
DC conductivity drops significantly [24] and, in contrast to the solid, there is clear 
mm evidence [13] in the liquid alloy for strongly localized excess spins as discussed 
here. It is largely for these reasons that we have emphasized the primary role of 
coulombic disorder, with enhancement of correlation effects and possible polaronic 
readjustments being viewed in effect as attendant processes. 

It should be remembered that these distinctions are in part a matter of degree, and 
that various relevant physical mechanisms are not mutually exclusive. Indeed, in their 
study of M-MX melts, Senatore et a1 [55] argue that there is no obvious contradiction 
between an F centre model and one involving Anderson localization; and suggest 
that the F centre bound states may be the lowest electronic states associated with an 
Anderson tail to the conduction band of the solution, a view previously discussed by 
Katz and Rice [56] for M-Mx systems. 

Nonetheless, as above, there does appear to be a difference in the properties of 
Cs-Au compared with the M-W. This may perhaps be connected to the fact that the 
stoichiometric M-MXs are large band gap materials (A@ - 6 eV for CsI through to - 12 eV for LiF), whereas for stoichiometric crystalline Cs-Au at its melting point 
A E g  - 2 eV [12]. h the M-MX melts, electronic states for the initial excess electrons 
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will lie sufficiently far into the gap that they are more likely to be associated with 
deep trap vacancies, where the excess electronic charge primarily localhs off cation 
sites. For Cs,[csAu],~, in contrast, the lowest electronic states for excess electrons 
will typically lie not more. than - 1 eV (- $AE:) below the edge of the crystalline 
conduction band, and are envisaged as being more significantly associated with Cation 
sites, wmmensurate with [54] the experimental mean hyperfine coupling constants 

D E Logan and F Siringo 

for cs in c s , [ ( 3 s ~ u ] , ~ ,  [U] as opposed to cs,ICsIl,-, [.57J. 
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